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Abstract—Deep learning (DL) has emerged as a 

transformative tool for predictive maintenance (PdM) and 

fault diagnosis across industrial domains such as aerospace, 

automotive, energy, and process systems. This review 

synthesizes 35 recent studies employing diverse DL 

models—including CNN, LSTM, Transformer, 

Autoencoder, GAN, GNN, and hybrid physics-informed 

architectures—applied to sensor, acoustic, vibration, and 

process signals. The findings reveal that DL significantly 

improves Remaining Useful Life (RUL) estimation, 

anomaly detection, and fault classification, outperforming 

traditional machine learning approaches. Despite these 

advances, challenges persist: large data requirements, 

limited cross-domain generalization, model interpretability 

gaps, high computational cost, unstable training in 

generative methods, and unclear thresholds in 

unsupervised detection. Moreover, most research is 

constrained to component-level validation, with limited 

industrial deployment. This review identifies critical 

research gaps and provides future directions to guide the 

development of scalable, explainable, and resource-efficient 

DL solutions for real-world predictive maintenance. 

Index Terms— Predictive maintenance, deep learning, 

smart manufacturing, Remaining Useful Life, anomaly 

detection, Industry 4.0. 

I. INTRODUCTION 

he rapid advancement of Industry 4.0 and the proliferation of 

smart manufacturing systems have transformed the way 

industrial assets are monitored and maintained. Predictive 

maintenance (PdM), which aims to forecast potential failures 

before they occur, has emerged as a critical enabler of 

reliability, availability, and cost-effectiveness in modern 

industries such as aerospace, automotive, energy, process 

manufacturing, and transportation. Traditional machine 

learning techniques, though effective in certain scenarios, often 

struggle to capture the complex, nonlinear, and high-

dimensional patterns present in sensor and process data. 

In recent years, deep learning (DL) has gained prominence as a 

powerful solution for fault diagnosis, anomaly detection, and 

remaining useful life (RUL) estimation. Models such as 

Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), Long Short-Term Memory (LSTM), 

Autoencoders (AE), Transformers, Generative Adversarial 

Networks (GAN), and Graph Neural Networks (GNN) have 

demonstrated significant improvements over conventional 

methods. By leveraging sensor signals, vibration data, acoustic 

emissions, and multimodal inputs, DL-based methods offer 

superior feature extraction, long-term dependency modelling, 

and robustness in detecting early signs of faults. 

Despite these advancements, several challenges remain. Most 

DL models demand large labelled datasets, are domain-specific, 

and often lack interpretability, which limits their industrial 

deployment. Moreover, high computational costs, frequent 

retraining requirements, and issues such as false positives 

further hinder their scalability. These limitations underscore the 

need for a systematic review that not only synthesizes the 
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current state of DL applications in predictive maintenance but 

also highlights the existing research gaps and potential future 

directions. 

This review aims to provide a comprehensive analysis of recent 

deep learning approaches employed across diverse industrial 

systems for predictive maintenance. By comparing model 

types, input features, performance metrics, and limitations, the 

study offers critical insights into the strengths and weaknesses 

of existing solutions. Furthermore, the review identifies 

unresolved challenges and proposes future research avenues to 

guide the development of scalable, explainable, and resource-

efficient predictive maintenance frameworks. 

II. LITERATURE REVIEW 

The reviewed studies are summarized in Table 1, which 

outlines the industry, DL model, inputs, outputs, findings, and 

limitations. 

From the reviewed studies, several research gaps can be 

identified. First, most deep learning models demand large, 

labelled, and balanced datasets, yet many industrial domains 

suffer from limited or imbalanced data, restricting model 

robustness. Second, generalization remains a major challenge 

as approaches are often domain- or component-specific, 

making cross-industry adaptability difficult. Third, advanced 

architectures such as Transformers, GNNs, and hybrid models 

demonstrate high accuracy but are computationally expensive 

and challenging to deploy in real time. Additionally, 

interpretability is lacking in many models, as they provide 

accurate predictions without transparent fault reasoning, which 

limits industrial trust. Finally, only a few studies attempt to 

integrate physics-based knowledge with deep learning, leaving 

room for more robust and explainable hybrid approaches. 

III. RESEARCH GAPS 

Despite significant progress in applying deep learning for 

predictive maintenance, several open challenges remain that 

limit real-world scalability and industrial adoption. The key 

research gaps identified are: 

1. Data limitations – scarcity of labelled, balanced, and 

multimodal datasets restrict robust training and 

validation. 

2. Generalization – existing models are domain- or 

component-specific, with poor adaptability to unseen 

environments. 

3. Interpretability – deep models provide accurate 

results but lack transparent fault reasoning for 

industrial trust. 

4. Computational efficiency – Transformers, GNNs, 

and hybrids yield strong results but are 

computationally expensive. 

5. High false alarms – autoencoder-based methods still 

face thresholding challenges and false positives. 

Deployment barriers – real-world scalability, cost–benefit 

analysis, and integration into existing systems are 

underexplored. 

IV. CONCLUSION 

This review highlights the growing role of deep learning in 

predictive maintenance and fault diagnosis across diverse 

industries including aerospace, automotive, energy, 

manufacturing, and process systems. Models such as LSTM, 

CNN-LSTM, Transformer, and hybrid physics–DL 

architectures have demonstrated remarkable capability in RUL 

estimation, anomaly detection, and fault classification. 

However, their applicability remains restricted due to key 

challenges: the requirement for large and balanced datasets, 

limited generalization across domains, computational 

complexity of advanced architectures, and poor interpretability 

of predictions. Moreover, most studies are validated only in lab-

scale or single-component scenarios, raising concerns about 

scalability, deployment cost, and industrial reliability. 

Therefore, while deep learning has advanced predictive 

maintenance significantly, achieving practical, explainable, and 

resource-efficient solutions still remains a critical open 

challenge. 
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Table 1. Literature Review on Deep Learning Applications for Predictive Maintenance in Smart Manufacturing

Sr. 

No. 

Author Name Industry/System DL Model 

& Method 

Input 

Parameters 

Output/Metric Key Findings Limitation 

1 Li et al. [1] Aerospace 

(Turbofan 

engines) 

LSTM 

(RUL 

Estimation) 

Vibration, 

temperature 

RMSE of RUL Accurate RUL 

prediction with long-

term dependency 

capture 

Sensitive to noise, 

high training cost 

2 Khan et al. [2] Automotive CNN and 

LSTM 

Sensor time-

series 

Fault 

classification 

accuracy 

Improved fault 

detection vs. SVM 

Requires large 

labelled dataset. 

3 Andrianandrianina 

et al. [3] 

Process Industry Autoencoder Multisensor 

signals 

Reconstruction 

error 

Effective anomaly 

detection in pumps and 

valves. 

No fault-type 

classification 

4 Li et al. [4] Smart 

Manufacturing 

(General) 

Transformer Multivariate 

time-series 

Prediction 

accuracy 

Captured long-range 

dependencies. 

Computationally 

expensive 

5 Zhang et al. [5] Energy (Wind 

turbines) 

CNN Vibration 

signals 

Precision/Recall Robust detection of 

bearing faults. 

Limited to single-

component 

6 Benhanifia et al. 

[6] 

Industrial Robots GRU Torque, current 

signals 

RUL estimation 

error 

Better adaptability than 

LSTM. 

Poor explain ability 

7 Liu et al. [7] Rail transport CNN and 

Attention 

Acoustic 

emission 

Classification 

accuracy 

Early crack detection. Small dataset, 

limited 

generalization 

8 Wang et al. [8] Semiconductor 

fabs 

VAE Sensor logs Anomaly score Detected rare 

anomalies. 

False positives 

remain high 

9 Chen et al. [9] Oil & Gas Hybrid 

CNN–

LSTM 

Pressure, flow, 

temperature 

Downtime 

prediction 

Reliable PdM 

scheduling. 

Domain shift issue 

10 Silva et al. [10] Aerospace GNN System 

topology and 

sensor data 

Fault 

localization 

Modelled component 

dependencies. 

High model 

complexity 

11 Zhang et al. [11] Automotive 

Engines 

CNN Acoustic 

signals 

Accuracy Detected misfire faults 

with 95% accuracy. 

Sensitive to 

background noise 

12 Malhotra et al. 

[12] 

Power Plants LSTM-AE Multisensor Anomaly score Early detection of 

abnormal states. 

Needs frequent 

retraining 

13 Zhao et al. [13] Aviation CNN-LSTM Flight sensor 

data 

RUL estimation Improved prediction 

over baseline ML. 

High GPU demand 

14 Guo et al. [14] Manufacturing 

Line 

SAE 

(Stacked 

AE) 

Vibration Reconstruction 

error 

Detected tool wear 

effectively. 

Reconstruction error 

threshold unclear 

15 Li et al. [15] Wind Turbines Deep CNN Current signals Accuracy High bearing fault 

detection. 

Data imbalance 

issue 

16 Wen et al. [16] Automotive 

Gearbox 

Hybrid 

GRU-CNN 

Acoustic 

emission 

Fault diagnosis Improved temporal & 

spatial feature 

extraction. 

High model 

complexity 

17 Tang et al. [17] Semiconductor GAN Sensor signals Synthetic data Data augmentation 

improved 

classification. 

Generated data may 

distort distribution 

18 Liu et al. [18] Aerospace Bi-LSTM Multisensor RUL error Better long-term 

forecasting. 

Overfitting risk 

19 Chen et al. [19] Railways CNN Wheel 

vibration 

Fault detection 

rate 

High accuracy in crack 

detection. 

Limited to lab-scale 

dataset 

20 Wang et al. [20] Oil Pipelines CNN-LSTM Pressure, flow Leak detection 

accuracy 

Robust in dynamic 

conditions. 

Deployment cost 

high 

21 Zhang et al. [21] Smart Factory Transformer 

and CNN 

Multimodal Accuracy Outperformed 

traditional RNNs. 

Computationally 

heavy 

22 Kumar et al. [22] Energy 

(Hydropower) 

Deep RNN Vibration, 

temperature 

Anomaly 

detection 

Effective turbine 

monitoring. 

Lacked cost–benefit 

analysis 

23 Hu et al. [23] Aerospace GNN Component 

interactions 

Fault 

propagation 

Captured dependency 

faults. 

Requires structured 

topology data 
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V. FUTURE DIRECTION 

To address the above gaps and enable scalable, explainable, and 

efficient predictive maintenance systems, future research 

should focus on: 

1. Physics-informed and hybrid DL – integrating 

physics-based models with deep learning for 

robustness and interpretability. 

2. Few-shot and transfer learning – enabling cross-

domain adaptability with limited labeled data. 

3. Explainable AI (XAI) – embedding interpretability 

frameworks for improved decision-making in safety-

critical industries. 

4. Lightweight and edge-ready DL models – reducing 

computational cost for real-time deployment in 

embedded systems. 

5. Multimodal and federated learning – leveraging 

heterogeneous sensor data and decentralized training 

while preserving privacy. 

6. Benchmarking and standardization – developing 

open datasets, validation protocols, and cost–benefit 

analyses to accelerate industrial adoption 
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