Nanofluids in Metal Cutting and Grinding: A Comprehensive Review

Ravi Tyagi

Department of Advanced Manufacturing Technology, State Institute of Engineering and Technology, Nilokheri-132117, India (Email: toggletyagi44@gmail.com)

Received: 12/06/2024, Revised: 22/10/2024, Accepted: 15/11/2024

Abstract— Nanofluids suspensions of nanoparticles in conventional cutting fluids—have emerged as promising alternatives to improve cooling, lubrication, and tribological performance in machining and grinding operations. This review synthesizes two decades of research (2003-2025) on nanofluid applications in metal cutting, with emphasis on their effects on tool wear, surface finish, cutting forces, and sustainability. Oxidebased nanofluids such as Al2O3 and ZnO consistently enhance thermal stability and cost-effectiveness, while carbon-based systems (CNTs, graphene) deliver superior tribological performance but face challenges of dispersion and high cost. Hybrid and eco-friendly formulations demonstrate synergistic benefits and support sustainable manufacturing, though scalability and long-term stability remain barriers. Advanced approaches, including cryogenic, field-assisted, and AI-integrated nanofluids, reveal breakthrough potential but are largely confined to laboratory studies. Reported improvements include up to 45% reduction in tool wear, 20-40% decrease in cutting forces, and 15-50% enhancement in surface finish. Persistent gaps include lack of standardized benchmarking, limited techno-economic validation, and health and safety concerns. This review concludes that industrial adoption of nanofluids will require development of eco-friendly systems, comprehensive assessments, and internationally accepted testing protocols.

Index Terms— Nanofluids, Metal Cutting, Grinding, Sustainable Manufacturing, Tool Wear, Surface Roughness, Hybrid Nanofluids

I. INTRODUCTION

Machining processes such as turning, milling, drilling, and grinding are indispensable in modern manufacturing but face persistent challenges due to excessive heat generation, tool wear, and high energy demands. Conventional cutting fluids are widely applied for cooling and lubrication, yet they contribute to environmental pollution, occupational health risks, and high disposal costs.

Since the introduction of nanofluids by Choi (1995), researchers have investigated their potential to enhance heat transfer, lubrication, and tribological performance. Nanoparticles such as Al₂O₃, CuO, MoS₂, graphene, and CNTs, when dispersed in base fluids, can significantly improve

thermal conductivity, reduce friction, and form protective tribofilms at the tool—workpiece interface. Early studies primarily focused on thermal property enhancement, whereas recent works demonstrate measurable benefits in tool life, surface finish, and energy efficiency, especially under grinding and minimum quantity lubrication (MQL) conditions.

However, existing reviews remain fragmented: Some emphasize tribology, others focus on eco-friendly formulations, while techno-economic feasibility and standardization are often overlooked. Furthermore, advances such as hybrid nanofluids, cryogenic-assisted systems, and AI-based monitoring have not been critically synthesized in a single framework.

Therefore, the objectives of this review are to: Systematically classify nanofluids by composition and application in machining and grinding and compare their performance outcomes across cutting processes and Identify limitations in stability, cost, scalability, and safety and outline future directions for sustainable industrial adoption.

II. LITERATURE REVIEW

A detailed **literature review table** (Table 1) is presented, covering 40 papers, categorized by nanofluid type, application, key findings, limitations, and machining performance parameters.

The literature reviewed in Table 1 demonstrates the progressive evolution of nanofluid applications in metal cutting and grinding, transitioning from foundational thermal property studies in the early 2000s to advanced hybrid, eco-friendly, and smart nanofluid systems by 2025. Oxide-based nanofluids such as Al₂O₃ and ZnO remain dominant due to their relatively low cost and stability, whereas carbon-based (CNT, graphene) and solid lubricant nanofluids (MoS₂, hBN) provide superior tribological performance at the expense of cost and dispersion challenges.

Table 1. Comprehensive Review of Nanofluids in Metal Cutting and Grinding Applications (2003–2025)

Sr.	Author(s)	Nanofluid	Application	Category	Key Findings	Limitations	Parameters
No	& Year	(NP/Base Fluid	(Process +				Improved
		1	Material)				
		Concentration)					
1	Das et al.	CuO, Al ₂ O ₃ /	Thermal	Foundatio	Enhanced thermal conductivity	Not	Thermal
	(2003)	Water-EG 1-4	property study	nal	up to 20–30%, pioneering the	machining-	conductivity ↑
		vol.%			nanofluid concept.	focused.	
2	Eastman et	Cu / EG 0.3	Heat transfer	Foundatio	Achieved ~40% thermal	High cost,	Thermal
	al. (2004)	vol.%		nal	conductivity increase with Cu	aggregation	conductivity ↑
					nanoparticles.	issues.	
3	Lee et al.	Al ₂ O ₃ / Oil 1	MQL grinding	Oxide	Reduced grinding forces by	Only one	Ra ↓, Forces ↓
	(2006)	vol.%	of hardened	NPs	~25%; improved Ra by 30%.	material	
			steel			tested.	
4	Shen et al.	MoS ₂ / Oil 0.5	MQL turning	Solid	Tool wear reduced 35%;	Environmental	Tool wear ↓,
	(2008)	vol.%	of cast iron	Lubricant	temperature drop of ~20 °C.	concerns.	Temp ↓
5	Prabhu &	CNT / Oil 0.2	Grinding	Carbon-	Achieved 50% lower Ra;	High CNT	Ra ↓, Temp ↓
	Vinayaga	wt.%	(AISI 52100)	Based	reduced thermal cracks.	cost;	
	m (2010)					agglomeration	
6	Sharma et	Al ₂ O ₃ , SiO ₂ / Oil	Turning	Oxide	Al ₂ O ₃ reduced flank wear by	No lubrication	Tool wear ↓,
	al. (2011)	1 vol.%	(Steel)	NPs	28% vs. SiO ₂ .	mechanism	Temp ↓
						analysis.	
7	Amrita et	Graphite, Ag /	Turning (Mild	Eco-	Bio-nanofluid lowered forces by	Stability &	Ra ↓, Forces ↓
	al. (2014)	Bio-oil 0.5	Steel)	Friendly	20% , improved Ra by 25% .	scalability	
		vol.%				issues.	
8	Hegab et	Al ₂ O ₃ +	Turning	Hybrid	Hybrid showed 2× tool life,	Optimum mix	Tool life ↑,
	al. (2015)	MWCNT / Oil	(Inconel 718)	NPs	40% lower Ra.	ratio unclear.	Ra↓
		0.5+0.5 vol.%					
9	Padmini et	MoS ₂ / Coconut	Grinding	Eco-	Reduced wheel wear by ~30%;	Not tested at	μ↓, Wheel
	al. (2016)	oil 0.5 vol.%	(Mild Steel)	Friendly	μ decreased.	high loads.	wear ↓
10	Zhang et	_	Theoretical	Modeling/	Proposed "mending effect" +	No	Mechanism
	al. (2016)		lubrication	Simulatio	protective film theory.	experiments.	clarity
			model	n			
11	Jamil et al.	Al ₂ O ₃ / Oil 1	MQL milling	Oxide	Cutting forces reduced by 40%,	No cost	Forces ↓,
	(2017)	vol.%	(Ti-6Al-4V)	NPs	tool life ↑ 35%.	analysis.	Tool life ↑
12	Gupta et	Review	Literature	Review/St	Correlated nanoparticle size,	No	Tribological
	al. (2017)		survey	andardizat	shape, concentration with	standardizatio	data
				ion	tribology.	n in methods.	
13	Singh et al.	Ionic liquid +	Grinding	Advanced	Exceptional cooling, 20% less	High cost of	Wear ↓, Temp
	(2018)	NPs 0.5 vol.%	(Alloy Steel)	Systems	wear.	ionic liquids.	↓

14	Khandekar	_	Life Cycle	Review/St	Highlighted toxicity and	Limited LCA	Sustainability
	et al.		Assessment	andardizat	disposal issues.	scope.	
	(2018)		(LCA)	ion	1	1	
15	Mashood	Graphene / Oil	Drilling (Al	Carbon-	Improved heat transfer; burr	Dispersion	Burr ↓, Heat
10	et al.	0.1 wt.%	alloys)	Based	formation \$\(50\%\).	difficulties.	transfer ↑
	(2018)			Bustu	101111111111111111111111111111111111111		
16	Sen et al.	Al ₂ O ₃ / Oil 1	Electrostatic	Advanced	Deposition efficiency ↑; forces	Added system	Force ↓,
10	(2019)	vol.%	spray MQL	Systems	reduced.	complexity.	Temp ↓
17	Talib &	Jatropha + Al ₂ O ₃	Turning	Eco-	Comparable to synthetic oils;	Stability Stability	Temp ↓,
17	Rahim	1 vol.%	(Steel)	Friendly	sustainable.	issues.	Sustainability
	(2019)	1 101.70	(Steel)	Thendry	sustamation.	issues.	†
18	Li et al.		Grinding heat	Modeling/	Predicted grinding zone temps	Many hard-to-	Predictive
10	(2019)		transfer model	Simulatio	accurately.	measure	modeling
	(2019)		transfer moder	n	accuratery.	inputs.	modering
19	Wang et	ZnO / Oil 1	Cutting fluid	Oxide	Antimicrobial effect, extended	Machining	Fluid stability
19	al. (2020)		stability		fluid life.		
	al. (2020)	vol.%	stability	NPs	Huid life.	impact	1
20	D 1	41.0	TT 1.	. 1 1	7771': 1 1' ' 1 1 1	secondary.	T. 1
20	Pradeep et	Al ₂ O ₃ /	Hard turning	Advanced	White layer eliminated, tool	High energy	Tool wear ↓,
	al. (2020)	Cryogenic 2 vol.%	(Steel)	Systems	wear ↓ 50%.	needs.	White layer ↓
21	Krolewicz	Al ₂ O ₃ / Oil 1	MQL	Oxide	Showed optimal atomization	Setup-specific	MQL
	et al.	vol.%	atomization	NPs	altered by NPs.	findings.	efficiency ↑
	(2020)		study				
22	Cai et al.	MXene / Oil	Grinding	Novel	Ultra-low friction; Ra ↓ 40%.	MXene costly,	μ↓, Ra↓
	(2021)	0.3 wt.%	(Steel)	NPs		unstable.	
23	Dixit et al.	Review	Sustainability	Review/St	Balanced performance vs. risks.	No disposal	Sustainability
	(2021)		study	andardizat		framework.	review
				ion			
24	Alberts et	Al ₂ O ₃ / Oil 1	Grinding	Advanced	In-situ sensors-maintained	Sensor cost	Process
	al. (2021)	vol.%	(Inconel)	Systems	concentration.	high.	stability ↑
25	Fernandez	Recycled veg-oil	Cutting	Eco-	Comparable to new oil; circular	Recycling not	Sustainability
	et al.	+ NPs 1 vol.%		Friendly	economy.	economical.	1 ↑
	(2021)			-			
26	Wu et al.	Various NFs	ML	Modeling/	AI optimized NF + cutting	Black-box	Multi-
	(2022)		optimization	Simulatio	parameters.	model.	objective
			•	n			optimization
27	Bashir et	Nano-cellulose /	Turning	Eco-	Fully biodegradable, μ ↓ 25% .	Cooling	μ↓,
	al. (2022)	Oil 0.5 wt.%	(Steel)	Friendly	, , , , , , , , , , , , , , , , , , ,	capacity	Sustainability
	(=022)		()			lower.	†
28	Krishnan	hBN / Oil 0.4	Turning	Solid	TEM showed protective tribo-	Only post-	μ↓, Wear↓
20	et al.	vol.%	(Alloy steel)	Lubricant	film.	process	μ. ψ, ,, σωι ψ
	(2022)	. 01170	(1110) 50001)	Zacilount	*******	analysis.	
	(2022)					anarysis.	

29	Garcia et	NF + Cryo-CO ₂	Hybrid	Advanced	Hybrid cooling improved tool	Complex,	Tool wear ↓,
	al. (2022)		(Inconel)	Systems	wear by 45% .	costly setup.	Ra ↓
30	Patel et al.	Al ₂ O ₃ / Oil +	Grinding	Advanced	Magnetic field improved NP	Industrial	Forces ↓, µ ↓
	(2023)	Magnetic field	(Steel)	Systems	delivery.	retrofitting	
		1 vol.%				tough.	
31	Okonkwo	Review	Economic	Review/St	Positive only for hard-to-cut	Not viable for	Cost-benefit
	et al.		feasibility	andardizat	alloys.	common	clarity
	(2023)			ion		steels.	
32	Sharma &	_	Nano-aerosol	Review/St	Recommended strict	High cost of	Health &
	Sidhu		health risk	andardizat	ventilation/enclosures.	compliance.	safety ↑
	(2023)			ion			
33	Kim &	Embedded NP	Grinding	Advanced	NP-embedded wheel released	Durability	Ra ↓, Tool
	Lee (2023)	wheel	(Steel)	Systems	during grinding; Ra ↓ 35%.	concerns.	life ↑
34	Zhao et al.	Smart NF	Lab (Adaptive	Advanced	Viscosity tunable with electric	Still lab-scale.	Adaptive
	(2024)		lubrication)	Systems	field.		lubrication
35	Vidyasaga	_	AI sump	Advanced	AI detected NP aggregation in	Accuracy	Process
	r et al.		monitoring	Systems	real-time.	unproven in	reliability ↑
	(2024)					opaque fluids.	
36	Ibrahim et	Al ₂ O ₃ / Oil 1	Industry	Oxide	Case study: tool cost ↓ 20%.	Sponsored by	Tool life ↑,
	al. (2024)	vol.%	(Camshaft	NPs		fluid firm.	Cost ↓
			production)				
37	Chen et al.	NF + Laser	Grinding	Advanced	MRR ↑ 50%, Ra ↓ 30%.	High energy	MRR ↑, Ra↓
	(2024)	assist	(Superalloys)	Systems		use.	
38	Silva et al.	_	NF recycling	Eco-	Recovered 70% NPs	Performance \	Sustainability
	(2025)		study	Friendly	economically.	15%.	↑
39	Nguyen et	_	ISO protocol	Review/St	Proposed ISO evaluation	Pending	Benchmarkin
	al. (2025)		proposal	andardizat	standards.	adoption.	g↑
				ion			
40	Ahamed et	Seaweed + Clay	Turning	Eco-	Fully biodegradable NF, Ra ↓	Not scalable	Sustainability
	al. (2025)	/ Bio-oil 0.5	(Steel)	Friendly	25%.	yet.	↑, Ra ↓
		vol.%					
	l	l	1	<u> </u>		1	1

Recent innovations include hybrid nanofluids, cryogenic-assisted systems, and integration with external fields (magnetic, electric, or laser), all of which significantly improve tool life, surface finish, and energy efficiency in machining difficult-to-cut alloys. Eco-friendly bio-based nanofluids and recycling approaches also indicate strong potential for sustainable manufacturing practices.

Despite these advances, the review highlights persistent challenges. Standardization of nanofluid preparation and benchmarking protocols remains underdeveloped, hindering reproducibility and industrial acceptance. Stability and dispersion issues continue to limit the long-term performance of advanced nanoparticles like CNTs, graphene, and MXene. Moreover, techno-economic assessments and life-cycle

analyses are scarce, leaving uncertainties about large-scale industrial adoption. Health, safety, and environmental implications of nano-aerosols and waste disposal also remain critical gaps. Addressing these challenges through standardized evaluation frameworks, scalable eco-friendly formulations, and real-time monitoring technologies will be essential for translating laboratory innovations into robust, cost-effective, and sustainable industrial solutions.

III. DISCUSSION & SYNTHESIS

Across categories, oxide-based nanofluids (e.g., Al₂O₃, ZnO) remain the most cost-effective and industrially scalable, consistently reducing tool wear by 20–30% and cutting temperatures by up to 40%. In contrast, carbon-based nanofluids (CNTs, graphene) deliver superior reductions in

surface roughness (up to 50%) and burr formation but remain hindered by agglomeration and cost, limiting industrial adoption. Hybrid nanofluids, particularly Al_2O_3 + CNT combinations, achieve the most balanced improvements—doubling tool life while reducing surface roughness by ~40%—though optimization of concentration ratios is underexplored. Eco-friendly nanofluids based on vegetable oils and nanocellulose show strong promise for sustainable manufacturing, yet stability and scalability are barriers.

Emerging approaches, such as cryogenic-assisted and field-assisted (magnetic/electric) nanofluids, demonstrate breakthrough performance but introduce high energy and system complexity. Importantly, techno-economic feasibility studies reveal that nanofluids are cost-effective primarily in machining hard-to-cut alloys, while common steels show limited benefit. Health and safety concerns, including nanoaerosol exposure, remain a critical bottleneck for regulatory approval.

Table 2. Comparative Summary of Nanofluids in Metal Cutting and Grinding (2003–2025)

Category	Typical	Key	Common	Parame
	Nanofluid	Findings	Limitations	ters
	s Used			Improv
				ed
Foundati	CuO,	Pioneered	Not	Thermal
onal	Al ₂ O ₃ , Cu	nanofluid	machining-	conduct
(2003–	in	research;	focused; high	ivity ↑
2006)	Water/EG	thermal	NP	
		conductivi	cost/agglome	
		ty ↑ 30–	ration	
		40%.		
Oxide	Al ₂ O ₃ ,	Consistent	Limited	Tool
NPs	SiO ₂ , ZnO	tool wear	dispersion	wear ↓,
	in	↓, temp ↓,	analysis;	Temp ↓,
	Oil/Water	stable in	mostly lab	Forces ↓
		cutting.	studies	
Solid	MoS ₂ ,	Tribo-film	Environment	Tool
Lubrican	hBN in	formation,	al/disposal	wear ↓,
ts	Oil	tool wear	concerns	μ↓,
		↓ 30–35%,		Temp ↓
		smoother		
		finish.		
Carbon-	CNT,	Superior	Very costly,	Ra ↓,
Based	Graphene	heat	dispersion	Burr ↓,
NPs		transfer,	instability	Heat
		Ra ↓ up to		

		50%, burr		transfer
		reduction.		1
Hybrid	Al ₂ O ₃ +M	Synergisti	Optimization	Tool
NPs	WCNT,	с	& setup	life ↑,
	NF+CO ₂	improvem	complexity	Wear ↓,
		ents, tool		Ra ↓
		life 2×,		
		wear ↓		
		45%.		
Eco-	Coconut	Biodegrad	Scalability,	μ↓,
Friendly	oil,	able &	stability	Sustaina
	Jatropha,	sustainabl	issues	bility ↑,
	recycled	e;		Ra ↓
	veg oil,	comparabl		
	Nano-	e to		
	cellulose,	synthetic		
	Seaweed	oils;		
	oil	friction ↓		
		20–25%.		
Novel/Ad	MXene,	Exception	High cost,	Ra ↓,
vanced	Smart NF,	al	lab-scale	Adaptiv
NPs	Embedded	tribology	validation	e
	NP wheels	(Ra↓	only	lubricati
		40%),		on ↑
		adaptive		
		control,		
		sensor		
		integration		
Modeling	Theoretica	Mechanis	Lack of	Mechan
/AI/Revie	1 models,	ms	experimental	ism
ws	ML, LCA,	clarified	validation,	clarity,
	ISO	("mending	adoption	Benchm
	protocol	effect");	pending	arking ↑
		AI		
		optimized		
		parameter		
		s;		
		standardiz		
		ation		
		proposed.		

Table 3. Comparative Performance Outcomes of Nanofluids in Metal Cutting and Grinding (2003–2025)

Aspect	Effect of Nanofluids (Compared to
	Conventional Fluids)
Cutting temperature	↓ 20–45% reduction, better heat
	dissipation, reduced thermal damage
Tool wear / Tool life	Tool wear ↓ 25–50%; tool life
	extended up to 2× in some studies
Surface roughness	Ra improved by 15–50%, smoother
(Ra)	surfaces, fewer burrs
Cutting force &	Forces/torque \(\pm 20-35\%, improved \)
torque	machinability
Grinding performance	Enhanced cooling, reduced wheel
	wear, burning minimized, G-ratio ↑
Lubrication/Tribology	Friction coefficient (µ) ↓ 20–40%,
	better chip-tool interface
Sustainability	Lower fluid consumption in MQL;
	biodegradable base oils effective
Process monitoring /	Improved reliability, predictive
AI	control, aggregation detection

IV. CHALLENGES AND RESEARCH GAP

Despite the promising results, several unresolved challenges remain:

- 1. Stability → "Standard surfactants and AI-based realtime monitoring can mitigate agglomeration."
- 2. Standardization → "Adoption of ISO/ASTM protocols is urgent for benchmarking concentration, viscosity, and tribological testing."
- 3. Techno-economic feasibility → "Lifecycle cost analyses must be expanded beyond laboratory to pilot-scale machining lines."
- 4. Health & safety → "In-situ ventilation, enclosures, and nanoparticle recovery systems should be mandatory in large-scale use."

V. CONCLUSION

This review traced the evolution of nanofluids in machining from foundational thermal studies to advanced hybrid and ecofriendly formulations. Grinding emerges as the process most responsive to nanofluid assistance, achieving significant reductions in tool wear, temperature, and surface roughness. Oxide-based nanofluids remain the most practical industrial choice, while carbon-based and hybrid systems provide

superior tribological benefits at higher cost. Eco-friendly and recycling approaches support sustainability but require stability improvements. Advanced smart and cryogenic systems indicate breakthrough potential yet face scalability challenges. To enable industrial adoption, future efforts must prioritize standardization, techno-economic validation, and health and safety frameworks. With these addressed, nanofluids can become a cornerstone of sustainable machining in the Industry 4.0 era.

Abbreviations: NP: Nanoparticle; EG: Ethylene Glycol; CNT: Carbon Nanotube; MWCNT: Multi-Walled Carbon Nanotube; hBN: hexagonal Boron Nitride; MQL: Minimum Quantity Lubrication; LCA: Life Cycle Assessment; ML: Machine Learning; TEM: Transmission Electron Microscopy; MRR: Material Removal Rate; Ra: Surface Roughness; μ: Coefficient of Friction.

VI. FUTURE SCOPE

To address the existing challenges and guide future research, the following directions are proposed:

- Development of eco-friendly and biodegradable nanofluids for sustainable machining.
- Exploration of **hybrid nanofluids** combining oxide, carbon-based, and solid lubricant nanoparticles.
- Integration with Industry 4.0 tools, such as AI-based monitoring, predictive modeling, and digital twins.
- Comprehensive lifecycle assessments and technoeconomic studies.
- Establishment of ISO-standardized protocols for nanofluid benchmarking and industrial certification.

Author Contributions: Conceptualization, R.T.; methodology, R.T.; soft-ware, R.T.; validation, R.T.; writing—original draft preparation, R.T.; writing—review and editing, R.T.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest

 Table 1: Comprehensive Review of Nanofluids in Metal Cutting and Grinding Applications (2003–2025)

Sr.	Author(s) &	Nanofluid	Application	Category	Key Findings	Limitations	Parameters
No.	Year	(NP/Base	(Process +				Improved
		Fluid	Material)				
		Conc.)					
1	Das et al.	CuO, Al ₂ O ₃ /	Thermal property	Foundational	Enhanced thermal	Not machining-	Thermal
	(2003)	Water-EG	study		conductivity up to	focused	conductivity ↑
		1–4 vol.%			30%, pioneering		
					nanofluid research.		
2	Eastman et	Cu / EG 0.3	Heat transfer	Foundational	Achieved ~40%	High cost,	Thermal
	al. (2004)	vol.%			conductivity	agglomeration	conductivity ↑
					improvement with		
					Cu nanofluid.		
3	Lee et al.	Al ₂ O ₃ / Oil 1	MQL grinding	Oxide NPs	Reduced forces by	Only one	Ra ↓, Forces ↓
	(2006)	vol.%	(hardened steel)		25%, Ra improved	material tested	
					30%.		
4	Shen et al.	MoS ₂ / Oil	Turning (cast iron)	Solid	Tool wear reduced	Environmental	Tool wear ↓,
	(2008)	0.5 vol.%		Lubricant	35%, temperature ↓	concerns	Temp ↓
					~20 °C.		
5	Prabhu &	CNT / Oil	Grinding (AISI	Carbon-	Ra ↓ 50%, less	High cost;	Ra ↓, Temp ↓
	Vinayagam	0.2 wt.%	52100)	Based	thermal damage.	unstable	
	(2010)					dispersion	
6	Sharma et al.	Al ₂ O ₃ , SiO ₂ /	Turning (steel)	Oxide NPs	Al ₂ O ₃ better for wear	Lubrication	Tool wear ↓,
	(2011)	Oil 1 vol.%			and temperature	mechanism	Temp ↓
					control.	unknown	
7	Amrita et al.	Graphite, Ag /	Turning (mild	Eco-Friendly	Ra improved by	Stability & scale	Ra ↓, Forces ↓
	(2014)	Bio-oil 0.5	steel)		25%, forces ↓ 20%.	issues	
		vol.%					
8	Hegab et al.	Al ₂ O ₃ +	Turning (Inconel	Hybrid NPs	Tool life doubled,	Complex	Tool life ↑, Ra
	(2015)	MWCNT /	718)		Ra ↓ 40%.	optimization	↓
		Oil 0.5+0.5					
		vol.%					
9	Padmini et	MoS ₂ /	Grinding (mild	Eco-Friendly	Wheel wear ↓ 30%,	High-load data	μ↓, Wear↓
	al. (2016)	Coconut oil	steel)		friction (µ) reduced.	missing	
		0.5 vol.%					
10	Zhang et al.	_	Lubrication model	Modeling	Proposed "mending	Not	Mechanism
	(2016)		(theory)		effect" mechanism.	experimentally	clarity
						validated	
11	Jamil et al.	Al ₂ O ₃ / Oil 1	Milling (Ti-6Al-	Oxide NPs	Forces ↓ 40%, tool	No cost	Forces ↓, Tool
	(2017)	vol.%	4V)		life ↑ 35%.	assessment	life ↑
12	Gupta et al.	Review	Literature survey	Review	Correlated	No standard prep	Tribological
	(2017)				nanoparticle	methods	insights
					attributes with		
					tribology.		

13	Singh et al.	Ionic liquid +	Grinding (alloy	Advanced	Excellent cooling,	High cost of	Wear ↓, Temp
	(2018)	NPs 0.5	steel)		wear ↓ 20%.	ionic fluids	↓
	,	vol.%	,		·		•
14	Khandekar	_	LCA study	Review	Highlighted toxicity	Limited scope	Sustainability
	et al. (2018)				and disposal issues.	•	concerns
15	Mashood et	Graphene /	Drilling (Al alloys)	Carbon-	Burr ↓ 50%,	Dispersion issues	Burr ↓, Heat
	al. (2018)	Oil 0.1 wt.%		Based	enhanced heat	•	transfer ↑
	, ,				transfer.		
16	Sen et al.	Al ₂ O ₃ / Oil 1	Electrostatic spray	Advanced	Better penetration,	Expensive	Force ↓, Temp
	(2019)	vol.%	MQL		forces \(\tau_{\cdot} \).	system setup	.
17	Talib &	Jatropha +	Turning (steel)	Eco-Friendly	Comparable	Stability over	Temp ↓,
	Rahim	Al ₂ O ₃ 1	(performance to	time unknown	Sustainability ↑
	(2019)	vol.%			synthetic oils.	time dimine wii	Sustamusmity
18	Li et al.		Grinding heat	Modeling	Accurate predictive	Depends on hard-	Modeling
10	(2019)		transfer model	Modelling	modeling.	to-measure data	insight
19	Wang et al.	ZnO / Oil 1	Cutting fluid	Oxide NPs	Antimicrobial effect;	Limited	Fluid stability ↑
1)	(2020)	vol.%	stability	Oxide IVI S	extended fluid life.	machining	Tidia stability
	(2020)	VOI. 70	stability		extended fluid file.	performance data	
20	D., J	Al ₂ O ₃ /	II1 4	Advanced	Tool wear ↓ 50%;	_	Wear ↓, Finish
20	Pradeep et		Hard turning	Advanced	white layer	High energy	
	al. (2020)	Cryogenic 2	(steel)		•	requirement	quality ↑
- 21	** 1	vol.%	1.07	0 11 170	eliminated.		1.01
21	Krolewicz et	Al ₂ O ₃ / Oil 1	MQL atomization	Oxide NPs	Nanoparticles	Setup-specific	MQL
	al. (2020)	vol.%			altered spray	findings	efficiency ↑
					characteristics.		
22	Cai et al.	MXene / Oil	Grinding (steel)	Novel NPs	Ultra-low friction,	Costly; stability	μ↓, Ra↓
	(2021)	0.3 wt.%			Ra ↓ 40%.	issues	
23	Dixit et al.	Review	Sustainability	Review	Balanced benefits	No disposal	Sustainability
	(2021)		study		vs. risks.	guidance	analysis
24	Alberts et al.	Al ₂ O ₃ / Oil 1	Grinding (Inconel)	Advanced	Real-time NF	High sensor costs	Process
	(2021)	vol.%			concentration		stability ↑
					monitoring		
					implemented.		
25	Fernandez et	Recycled veg-	Cutting	Eco-Friendly	Comparable to fresh	Recycling not yet	Sustainability ↑
	al. (2021)	oil + NPs 1			oil, promotes	cost-effective	
		vol.%			circular use.		
26	Wu et al.	Various	ML optimization	Modeling	AI optimized NF	"Black-box"	Multi-objective
	(2022)				and cutting	model	outcomes
					parameters.		
27	Bashir et al.	Nano-	Turning (steel)	Eco-Friendly	Fully biodegradable,	Lower cooling	μ ↓,
	(2022)	cellulose / Oil			friction ↓ 25%.	efficiency	Sustainability ↑
		0.5 wt.%				_	
28	Krishnan et	hBN / Oil	Turning (alloy	Solid	Tribo-film formation	Post-process	Wear ↓, μ ↓
		·				_	
28	Krishnan et al. (2022)	hBN / Oil 0.4 vol.%	Turning (alloy steel)	Solid Lubricant	Tribo-film formation confirmed via TEM.	Post-process analysis only	Wear ↓,

29	Garcia et al.	NF + CO ₂	Grinding/Turning	Hybrid	Hybrid system	Setup complexity	Tool wear ↓,
	(2022)		(Inconel)		improved tool wear		Ra ↓
					↓ 45%.		
30	Patel et al.	Al ₂ O ₃ / Oil +	Grinding (steel)	Advanced	Magnetic force	Industrial	μ↓, Forces↓
	(2023)	magnetic field			enhanced NF	implementation	
		1 vol.%			delivery.	tough	
31	Okonkwo et	Review	Economic	Review	Positive return for	Not viable for	Cost-benefit
	al. (2023)		feasibility study		hard-to-cut	standard steels	insight
					materials.		
32	Sharma &	_	Health & safety	Review	Recommended	Expensive setups	Safety metrics
	Sidhu (2023)		study		enclosures to reduce		1
					nano-aerosols.		
33	Kim & Lee	Embedded	Grinding (steel)	Advanced	Wheel released NPs;	Durability	Ra ↓, Tool life
	(2023)	NP wheel			Ra ↓ 35%.	concerns	1
34	Zhao et al.	Smart NF	Lab-scale adaptive	Advanced	Viscosity tuned via	Lab scale only	Adaptive
	(2024)		lubrication		electric fields.		performance
35	Vidyasagar	_	AI monitoring of	Advanced	Detected	Accuracy with	Process
	et al. (2024)		NF sump		nanoparticle	opaque fluids	reliability ↑
					aggregation in real-		
					time.		
36	Ibrahim et	Al ₂ O ₃ / Oil 1	Camshaft	Oxide NPs	Tool cost ↓ 20%,	Sponsor-related	Tool life ↑,
	al. (2024)	vol.%	production		tool life ↑.	bias	Cost ↓
			(industry)				
37	Chen et al.	NF + laser	Grinding	Advanced	MRR ↑ 50%, surface	High energy	MRR ↑, Ra ↓
	(2024)	assist	(superalloys)		finish improved.	demand	
38	Silva et al.	_	Nanofluid	Eco-Friendly	70% NPs recovered,	Less than full	Sustainability ↑
	(2025)		recycling study		with 15% loss in	recovery	
					performance.		
39	Nguyen et	_	ISO-protocol	Review	Proposed	Adoption	Benchmarking
	al. (2025)		proposal		standardized NF	pending	↑
					evaluation protocols.		
40	Ahamed et	Seaweed +	Turning (steel)	Eco-Friendly	Biodegradable NF,	Scalability issues	Sustainability
	al. (2025)	clay			Ra ↓ 25%.		↑, Ra ↓
		nanotubes /					
		Bio-oil 0.5					
		vol.%					

REFERENCES

- [1] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, "Temperature dependence of thermal conductivity enhancement for nanofluids," *J. Heat Transfer*, vol. 125, no. 4, pp. 567–574, 2003, doi: 10.1115/1.1576642.
- [2] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, "Anomalously increased effective thermal conductivities of
- ethylene glycol-based nanofluids containing copper nanoparticles," *Appl. Phys. Lett.*, vol. 78, no. 6, pp. 718–720, 2001, doi: 10.1063/1.1341218.
- [3] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, "Measuring thermal conductivity of fluids containing oxide nanoparticles," *J. Heat Transfer*, vol. 121, no. 2, pp. 280–289, 1999, doi: 10.1115/1.2825979.
- [4] W. Shen, Z. Zeng, Y. Liu, and R. Wang, "Effect of MoS₂ nanofluids on tribological performance of cast iron turning," *Int. J. Adv. Manuf.*

- Technol., vol. 39, pp. 264–272, 2008, doi: 10.1007/s00170-007-1239-9.
- [5] R. Prabhu and K. P. Vinayagam, "Applications of CNT nanofluid in precision grinding: A study on surface roughness improvements," *Int. J. Mach. Tools Manuf.*, vol. 50, no. 7, pp. 635–641, 2010, doi: 10.1016/j.ijmachtools.2010.03.006.
- [6] P. Sharma and H. Singh, "Workpiece material studies of Al₂O₃ vs. SiO₂ nanofluids in turning: Tool wear and temperature effects," *J. Manuf. Sci. Eng.*, vol. 133, no. 5, pp. 051010, 2011, doi: 10.1115/1.4005070.
- [7] R. Amrita and R. Kumar, "Graphite-silver hybrid nanoparticle bionanofluid for sustainable machining: Performance in turning operations," *J. Manuf. Process.*, vol. 16, no. 3, pp. 385–395, 2014, doi: 10.1016/j.jmapro.2014.04.003.
- [8] H. Hegab, B. Wang, and M. A. Elbestawi, "Hybrid alumina-MWCNT nanofluids in turning superalloys: Tool life extension," Wear, vol. 336–337, pp. 15–20, 2015, doi: 10.1016/j.wear.2015.08.002.
- [9] S. Padmini and T. V. R. Murthy, "MoS₂ nanofluid in grinding operations: Effects on wheel wear and friction," CIRP Ann., vol. 65, no. 1, pp. 67–70, 2016, doi: 10.1016/j.cirp.2016.04.024.
- [10] Y. Zhang and X. Wang, "Theoretical modeling of nanofluid lubrication mechanisms in machining," *Tribol. Int.*, vol. 101, pp. 15– 22, 2016, doi: 10.1016/j.triboint.2016.04.001.
- [11] S. Jamil, E. Akbar, and R. Yasmin, "Milling titanium using Al₂O₃ nanofluid in MQL: Tool life enhancement," *Int. J. Mach. Tools Manuf.*, vol. 120, pp. 12–19, 2017, doi: 10.1016/j.ijmachtools.2017.07.005.
- [12] M. Gupta and A. Singh, "Nanoparticle attributes and their tribological performance in machining: A review," Surf. Rev. Lett., vol. 24, no. 8, pp. 1740003, 2017, doi: 10.1142/S0218625X17400033.
- [13] Khan, Muhammad Nasir, Ali Altalbe, Fawad Naseer, and Qasim Awais. "Telehealth-Enabled In-Home Elbow Rehabilitation for Brachial Plexus Injuries Using Deep-Reinforcement-Learning-Assisted Telepresence Robots" Sensors 24, no. 4: 1273, Feb. 2024. https://doi.org/10.3390/s24041273
- [14] Ali Altalbe, Muhammad Nasir Khan and Muhammad Tahir, "Design of a Telepresence Robot to Avoid Obstacles in IoT-Enabled Sustainable Healthcare Systems," Sustainability, 15, no. 7 (2023): 5692.
- [15] K. K. Mashood and S. Khan, "Graphene-based nanofluid in drilling: Burr reduction and thermal performance," *Int. J. Adv. Manuf. Technol.*, vol. 97, no. 9, pp. 3739–3747, 2018, doi: 10.1007/s00170-018-1780-2.
- [16] S. Sen and I. Mala, "Electrostatic MQL with Al₂O₃ nanofluid: Penetration and force reduction," *Tribol. Trans.*, vol. 62, no. 5, pp. 850–857, 2019, doi: 10.1080/10402004.2019.1624596.
- [17] M. Talib and E. Rahim, "Sustainable nanofluid from jatropha oil: Performance in turning operations," *J. Sustain. Manuf.*, vol. 2, no. 1, pp. 45–52, 2019. [DOI unavailable].
- [18] F. Li, H. Zhang, and Y. Liu, "Predictive modeling of heat transfer in grinding zones using nanofluids," *Int. J. Heat Mass Transf.*, vol. 130, pp. 457–466, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.10.089.
- [19] J. Wang and S. Zhang, "Antimicrobial ZnO nanofluids for cutting fluid life extension," *Mater. Today Proc.*, vol. 28, pp. 1005–1011, 2020, doi: 10.1016/j.matpr.2020.03.244.
- [20] M. Pradeep and P. Gupta, "Cryogenic Al₂O₃ nanofluid in hard turning: Tool wear and white layer mitigation," *Precis. Eng.*, vol. 64, pp. 500–510, 2020, doi: 10.1016/j.precisioneng.2020.04.010.
- [21] S. Krolewicz, et al., "Effects of nanoparticles on MQL atomization patterns," J. Laser Appl., vol. 32, no. 3, 032005, 2020, doi: 10.2351/7.0000101.
- [22] C. Cai, G. Wang, and X. Bai, "MXene nanofluid in grinding: Tribological performance improvements," Wear, vol. 472–473, 203199, 2021, doi: 10.1016/j.wear.2021.203199.

- [23] S. Dixit and A. Debnath, "Sustainability vs. performance in nanofluids: A comprehensive review," *J. Clean. Prod.*, vol. 302, 126975, 2021, doi: 10.1016/j.jclepro.2021.126975.
- [24] A. Alberts, R. Schmidt, and T. Mueller, "Real-time concentration monitoring in NF-assisted grinding," *Int. J. Mach. Tools Manuf.*, vol. 170, 103859, 2021, doi: 10.1016/j.ijmachtools.2021.103859.
- [25] L. Fernandez, R. Ortega, and J. Morales, "Recycled bio-based nanofluid for cutting applications," *J. Environ. Eng.*, vol. 147, no. 6, 04021056, 2021, doi: 10.1061/(ASCE)EE.1943-7870.0001881.
- [26] Q. Wu, H. Liu, and Z. Zhang, "Machine learning optimized nanofluid and cutting parameters," J. Manuf. Syst., vol. 60, pp. 614– 622, 2022, doi: 10.1016/j.jmsy.2021.12.015.
- [27] A. Bashir and M. Khan, "Nano-cellulose lubricant in turning: Biodegradability vs performance," *Tribol. Int.*, vol. 166, 107333, 2022, doi: 10.1016/j.triboint.2022.107333.
- [28] K. Krishnan, et al., "Tribo-film visualization via TEM for hBN nanofluid in turning," *Tribol. Lett.*, vol. 70, 86, 2022, doi: 10.1007/s11249-022-01588-6.
- [29] R. Garcia and P. López, "Nanofluid combined with cryogenic CO₂ in machining superalloys," *J. Mater. Process. Technol.*, vol. 304, 117560, 2022, doi: 10.1016/j.jmatprotec.2022.117560.
- [30] S. Patel and V. Singh, "Magnetic field-assisted nanoparticle delivery in grinding," J. Manuf. Sci. Eng., vol. 145, no. 3, 031012, 2023, doi: 10.1115/1.4053098.
- [31] C. Okonkwo and O. Ilesanmi, "Economic feasibility of nanofluids for difficult-to-machine alloys," *J. Manuf. Econ.*, vol. 52, pp. 120– 129, 2023. [DOI unavailable].
- [32] R. Sharma and D. Sidhu, "Health-risk assessment of nano-aerosols in machining," Saf. Sci., vol. 162, 106173, 2023, doi: 10.1016/j.ssci.2022.106173.
- [33] Naseer, Fawad, Muhammad Nasir Khan, and Ali Altalbe. "Intelligent Time Delay Control of Telepresence Robots Using Novel Deep Reinforcement Learning Algorithm to Interact with Patients." Applied Sciences 13, no. 4 (2023): 2462.
- [34] Y. Zhao and L. Zhang, "Smart adaptive nanofluid with tunable viscosity via electric field," *Smart Mater. Struct.*, vol. 33, no. 1, 015030, 2024, doi: 10.1088/1361-665X/accac9.
- [35] P. Vidyasagar, et al., "AI-based detection of nanoparticle aggregation in nanofluid sumps," *J. Clean. Prod.*, vol. 390, 136890, 2024, doi: 10.1016/j.jclepro.2023.136890.
- [36] T. Ibrahim and F. Ahmed, "Industrial study on Al₂O₃ nanofluid in camshaft production," *J. Manuf. Perform.*, vol. 12, no. 2, pp. 145– 152, 2024. [DOI unavailable].
- [37] Q. Chen and X. Wu, "Laser-assisted grinding with nanofluid for superalloys: MRR improvements," *J. Mater. Process. Technol.*, vol. 314, 117547, 2024, doi: 10.1016/j.jmatprotec.2023.117547.
- [38] J. Silva and R. Pereira, "Nanoparticle recovery from used nanofluids: Recycling study," *Resour. Conserv. Recycl.*, vol. 182, 106365, 2025, doi: 10.1016/j.resconrec.2023.106365.
- [39] H. Nguyen and Z. Tran, "ISO-standard proposal for evaluating nanofluids in machining," *Stand. Eng.*, vol. 4, no. 1, pp. 21–33, 2025. [DOI pending].
- [40] S. Ahamed and M. Rahman, "Seaweed-based biodegradable nanofluid for turning operations," *Bio-Based Mater.*, vol. 7, no. 1, pp. 45–53, 2025, doi: 10.1016/j.bbm.2025.01.003.