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Abstract—This study examines the efficacy of three distinct 

machine learning models for sentiment analysis: Bidirectional 
Long Short-Term Memory (Bi-LSTM), Long Short-Term 
Memory (LSTM), and Logistic Regression. One of the most 
important tasks in natural language processing is sentiment 
analysis, which entails categorizing reviews as positive or negative. 
Fifty thousand sentiment-labeled movie reviews make up the 
dataset. To determine the most precise and effective technique for 
sentiment categorization, we put these models into practice and 
evaluated their respective performances. The highest accuracy of 
89.42% is achieved by Logistic Regression, with precision of 
88.35%, recall of 91.01%, and F1-score of 89.66%. The LSTM 
model, well-known for capturing temporal dependencies in text, 
obtained an accuracy of 86.23%, precision of 89.60%, recall of 
82.22%, and an F1-score of 85.75%. The Bi-LSTM model, which 
processes input sequences in both forward and backward 
directions to better capture context, demonstrated accuracy of 
87.65%, precision of 88.67%, recall of 86.54%, and an F1-score of 
87.60%. The results show that although Logistic Regression 
performs better in accuracy, the Bi-LSTM model offers a 
substantial trade-off between precision and recall, making it a 
viable option for sentiment analysis applications. Despite its minor 
accuracy lag, the LSTM model provides important insights into 
the sequential relationships of the text data. 
 

Index Terms—LSTM, Bi-LSTM, Logistic Regression, NLP.  
 

I. INTRODUCTION 
HIS Sentiment analysis, or opinion mining, is an important 
branch of natural language processing (NLP) that deals 

with recognizing and classifying sentiments conveyed in text to 
elucidate the writer's perspective on a given subject. As user-
generated material on the internet continues to develop 
exponentially, sentiment analysis is becoming more and more 
crucial for various applications, such as social media 
monitoring, market analysis, and consumer feedback. This 
study explores the field of sentiment analysis using the 50,000+ 
movie reviews from IMDB that have been classified as either 
 
 
 

positive or negative. The main objective is to assess and 
compare the efficiency of various machine learning models in 
classifying these sentiments accurately. First, we start with the 
popular and effective approach for binary classification tasks, 
known as logistic regression. Because Logistic Regression can 
handle huge feature spaces efficiently, it is a powerful baseline 
even though it is simple. Next, we investigate the potential of 
recurrent neural networks (RNNs) with the Long Short-Term 
Memory (LSTM) model, which is particularly well-suited to 
representing temporal relationships in sequential data. Because 
LSTMs can preserve long-term dependencies—a critical skill 
for comprehending sentence context—they are especially well-
suited for handling text data. We also look into Bidirectional 
Long Short-Term Memory (Bi-LSTM) networks, which can 
process input sequences forward and backward, extending the 
capabilities of ordinary LSTMs. Due to its bidirectional 
approach, Bi-LSTMs are especially useful for tasks where 
comprehending the entire sequence context is crucial since they 
can capture context more thoroughly. In addition to comparing 
various models, this study sheds light on each one's benefits and 
drawbacks regarding sentiment analysis. This research seeks to 
influence future work in NLP and sentiment analysis by 
comparing classic and advanced machine learning algorithms 
and utilizing a real-world dataset and robust assessment 
measures. The results highlight how crucial it is to choose a 
model according to the particular needs of the sentiment 
analysis activity, adding significant information to the field. 

II. LITERATURE REVIEW 
 Numerous deep learning and machine learning models have 

been used to investigate the sentiment analysis of movie 
reviews in great detail. Ali et al. ￼ developed a sentiment 
analysis classifier for the IMDB dataset using deep learning 
models. Qaisar used long short-term memory (LSTM) networks 
[2]. Using the IMDB dataset, Amulya et al. [3] evaluated deep 
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learning and machine learning techniques for sentiment 
analysis. Sentiment analysis tasks have also made use of 
Bidirectional LSTMs, or Bi-LSTMs. Minaee et al. ￼ employed 
an ensemble of CNN and Bi-LSTM networks for sentiment 
analysis. Vimali and Murugan [5] concentrated on the output of 
Bi-LSTM structures to identify the most effective sentiment 
analysis technique. A CNN model for brief text sentiment 
analysis based on Bi-LSTM self-attention was suggested by 
Bhuvaneshwari et al. in [6]. Because LSTMs can identify 
sequential relationships in text data, they are frequently utilised 
in sentiment analysis. A regional CNN-LSTM model for 
dimensional sentiment analysis was presented by Wang et al. 
[7]. An attention-emotion-enhanced convolutional long short-
term memory for sentiment analysis was presented by Huang et 
al. in [8]. Using LSTMs, Murthy et al. [9] conducted sentiment 
analysis on text reviews. Instead of using a bidirectional LSTM 
model for sentiment analysis in large social data, Behera et al. 
[10] used a standard LSTM model. Sentiment analysis has also 
made use of logistic regression. Tyagi and Sharma [11] 
conducted sentiment analysis using Logistic Regression and a 
useful word score heuristic. Multinomial Logistic Regression 
was selected by Ramadhan et al. [12] for sentiment analysis 
because of its competitive performance in terms of CPU and 
memory usage. Prabhat and Khullar evaluated Naïve Bayes and 
Logistic Regression [13] for sentiment categorization on large 
datasets. Gradient Descent Classifier and Logistic Regression 
were the machine learning techniques Aliman et al. used to 
determine the optimal sentiment analysis method. In their work 
on enhancing lexicons for sentiment analysis, Bhargava and 
Katarya [14] employed logistic regression to predict a logit 
change in the likelihood of quality of the norm for interest. 

III. PROBLEM STATEMENT 
   An enormous quantity of data has been created by the growth 
of user-generated material on websites like movie review sites, 
which must be processed and examined to derive valuable 
insights. Using textual data to reliably infer the sentiment of 
movie reviews—which can be either favourable or negative—
is a major difficulty. For enormous datasets, traditional methods 
like manual review are time-consuming and unfeasible. As a 
result, automated sentiment analysis methods that can quickly 
and precisely categorize the sentiment of movie reviews are 
desperately needed. The selection of a suitable machine 
learning model for this task is still crucial, though, as various 
models have varying capacities for managing textual input and 
capturing the subtleties of human language. 

IV. DATASET 
The IMDB movie reviews dataset, which includes 50,000 

reviews divided into positive and negative, was utilised for this 
study. Every review is a written contribution made by people 
that shares their thoughts and assessments on different films. 
Because there are an equal number of positive and negative 
ratings in the dataset, it is balanced and are used to train 
unbiased models. We first cleaned the text, converted it to 
lowercase, removed special characters, and removed common 
stop words that don't add much to the sentiment analysis to get 

the data ready for analysis. After cleaning the text, we tokenized 
it to separate the words and sentences. We utilized TF-IDF 
(Term Frequency-Inverse Document Frequency) vectorization 
for the Logistic Regression model to transform the textual data 
into numerical features that indicate the significance of 
individual phrases in the reviews. To achieve consistent input 
length for the neural networks in the LSTM and Bi-LSTM 
models, we first employed sequence padding after capturing the 
semantic meaning of words using word embedding. After that, 
the dataset was divided into training and testing sets, with 20% 
set aside for testing and 80% utilised to train the models. This 
division makes it possible to assess the models' performance on 
hypothetical data with reliability, guaranteeing the 
generalizability of the findings. The data that had been cleaned, 
tokenized, and vectorized offered a strong basis on which to 
train the machine learning models and assess how well they 
classified sentiment. This thorough data preparation procedure 
is essential to getting sentiment analysis results that are accurate 
and trustworthy. 

V. METHODOLOGY 
 Our study systematically employs three machine learning 

models—Logistic Regression, LSTM, and Bi-LSTM—to 
perform sentiment analysis on the IMDB movie reviews 
dataset. The methodology comprises several key steps, each 
critical for the overall process. Here, we detail each step 
comprehensively. 

A. Data Acquisition: 
The IMDB movie reviews dataset, which has 50,000 reviews 
classified as positive or negative, was used for this 
investigation. It was downloaded and put into a pandas Data 
Frame to process the dataset further. 
 

B. Data Inspection and Cleaning: 
Examining the dataset to comprehend its contents and structure 
is the first step. We looked at the initial few entries and the 
distribution of positive and negative evaluations to ensure the 
dataset was balanced. 
Next, all characters in the text data were changed to lowercase, 
special characters were deleted, and frequently occurring stop 
words were removed. This step reduces the noise in the 
evaluations, and the most important words are highlighted. 

C. Text Tokenization and Vectorization: 
Using the TF-IDF (Term Frequency-Inverse Document 
Frequency) vectorizer, the cleaned text data was transformed 
into numerical features for the Logistic Regression model. This 
technique aids in determining the significance of the words used 
in the reviews.  
Shape of TF-IDF matrix: (50000, 10000). 
First 20 feature names (words): ['007' '010' '10' '100' '1000' '101' 
'1010' '10br' '11' '110' '12' '13' 
 '13th' '14' '15' '150' '16' '17' '18' '18th'] 
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Figure 1: Distribution of reviews 

The number of features (words) used for modelling: 10000. The 
text was tokenized to make understanding the LSTM (Long 
Short-Term Memory) and Bi-LSTM (Bidirectional LSTM) 
models easier. After that, these sequences were padded to 
guarantee that their length was consistent, which allowed the 
neural network models to use them as input. 

D. Data Splitting: 
Eighty percent of the dataset was put aside for testing, while the 
remaining twenty percent was used for training. This division 
guarantees that the models are assessed using unseen data, 
offering a reliable measure of their efficacy. 

E. Model Training: 
Logistic Regression: We initialized and trained a Logistic 
Regression model using the TF-IDF vectorized data. The model 
was trained to classify reviews based on the extracted features. 
LSTM: Tensor Flow/Keras was used to create an LSTM model. 
The model design includes an embedding layer, an LSTM layer 
with dropout for regularization, and a dense output layer with a 
sigmoid activation function. The tokenized and padded 
sequences were used to train the model. 
Bi-LSTM: A bidirectional LSTM model was built using 
bidirectional layers instead of linear layers. The model's 
comprehension of the context in the reviews is enhanced by this 
design, which enables it to capture dependencies in both 
forward and backward directions. 

F. Model Evaluation: 
Several measures were used to assess the trained models on the 
testing set, including accuracy, precision, recall, F1-score, and 
confusion matrix. The ROC (Receiver Operating 
Characteristic) curve and AUC (Area Under the Curve) were 
presented to illustrate the models' performance further. 
Predictions for the Logistic Regression model was made using 
the TF-IDF vectorized test data. The tokenized and padded 
sequences of the test data were utilised for the LSTM and Bi-
LSTM models. 

VI. RESULT ANALYSIS 
 Several measures, including accuracy, precision, recall, F1-

score, and confusion matrix, were used to assess the 
performance of the three models: Bi-LSTM, LSTM, and 
logistic regression. These metrics thoroughly explain how well 
each model can categorize movie reviews as positive or 

negative. 

A. Logistic Regression: 
Out of the three models, the Logistic Regression model 
performed the best. It had the highest accuracy. The model's 
high recall implies that it properly detects a significant 
percentage of all positive reviews, while its high accuracy 
shows that it can effectively identify positive reviews. The 
balanced F1-score emphasizes the model's ability to handle 
both positive and negative feedback reliably. 

Accuracy 0.8942 
Precision 0.8834521286842613 

Recall 0.9101012105576504 
F1-score 0.8965786901270774 

Figure 2:Evaluation Metrics 

 
Figure 3:Classification Report 

 

 
Figure 4;Confusion Matrix 
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Figure 5:ROC Curve 

B. LSTM: 
Though it performed admirably, the LSTM model, created to 
capture temporal relationships in text data, trailed the Logistic 
Regression model by a small amount. The accuracy was quite 
high, suggesting that favourable evaluations were successfully 
identified. However, recall was lower than logistic regression, 
indicating that finding every good review might have been 
challenging. Despite its strength, the F1-score demonstrated 
this trade-off between recall and accuracy. 
 

Accuracy 0.8623 
Precision 0.8959775086505191 

Recall 0.8221869418535424 
F1-score 0.8574976715305805 

Figure 6: Evaluation Matrix 

 
Figure 7: Classification Report 

 
Confusion Matrix: 
[[4480 481] 
 [ 896 4143]] 

 
Figure 8:Confusion Matrix 

 

C. Bi-LSTM: 
The performance of the Bi-LSTM model outperformed the 
LSTM model as it captures dependencies in both forward and 
backward directions. It closely followed the Logistic 
Regression model, with an accuracy of 87.65%. In comparison 
to the LSTM, the Bi-LSTM produced a better F1 score 
because of its more balanced accuracy and recall. This 
suggests that the Bi-LSTM model gains from its enhanced 
context understanding by processing the text in both 
directions. 
 
 

Accuracy 0.8765 
Precision 0.8867425782838553 

Recall 0.8654494939472117 
F1-score 0.875966656623481 

Figure 9: Evaluation Matrix 

D. Confusion Matrices: 
The confusion matrices for each model provided further 
insights into their performance. Logistic Regression had the 
fewest misclassifications, followed by Bi-LSTM and then 
LSTM. This aligns with the overall accuracy and other 
evaluation metrics. 

VII. CONCLUSION  
 

Overall, while all three models demonstrated strong 
performance in sentiment analysis of movie reviews, the 
Logistic Regression model slightly outperformed the LSTM 
and Bi-LSTM models. However, the deep learning models 
(LSTM and Bi-LSTM) showed considerable promise, 
particularly in capturing more complex patterns in text data. 
The choice between these models may depend on specific 
application requirements, such as interpretability (favouring 
Logistic Regression) or the ability to capture intricate 
dependencies (favouring LSTM or Bi-LSTM). 
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APPENDIX 
Dataset Downloaded from the given link below: 

IMDB Dataset of 50K Movie Reviews (kaggle.com) 

A. Code for Data Exploration task: 
# Step 1: Mount Google Drive 
from google.colab import drive 
drive.mount('/content/drive') 
 
# Step 2: Load and Inspect the Dataset 
import pandas as pd 
 
# Define the file path 
file_path = "/content/drive/My Drive/IMDB Dataset.csv" 
 
# Load the dataset 
df = pd.read_csv(file_path) 
 
# Display the first few records to inspect the dataset 
print("First few records of the dataset:") 
print(df.head()) 
 
# Display the distribution of positive and negative reviews 
print("\nDistribution of reviews:") 
print(df['sentiment'].value_counts()) 

B. Code for Data Cleaning: 
# Step 1: Mount Google Drive 
from google.colab import drive 
drive.mount('/content/drive') 
 
# Step 2: Clean the Data 
import pandas as pd 
import re 
import nltk 
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize 
 
# Ensure you have the necessary NLTK resources 
nltk.download('punkt') 
nltk.download('stopwords') 
 
# Define the file path 
file_path = "/content/drive/My Drive/IMDB Dataset.csv" 
 
# Load the dataset 
df = pd.read_csv(file_path) 
 
# Display the first few records to inspect the dataset 
print("First few records of the dataset before cleaning:") 
print(df.head()) 
 
# Function to clean the text 
def clean_text(text): 
    # Convert text to lowercase 
    text = text.lower() 
    # Remove special characters 
    text = re.sub(r'[^a-zA-Z0-9\s]', '', text) 
    # Tokenize text 
    words = word_tokenize(text) 

    # Remove stop words 
    stop_words = set(stopwords.words('english')) 
    words = [word for word in words if word not in 
stop_words] 
    # Join the cleaned words back into a single string 
    cleaned_text = ' '.join(words) 
    return cleaned_text 
 
# Apply the clean_text function to the review column 
df['cleaned_review'] = df['review'].apply(clean_text) 
 
# Display the first few records after cleaning 
print("\nFirst few records of the dataset after cleaning:") 
print(df.head()) 
 
# Save the cleaned dataset to a new CSV file 
cleaned_file_path = "/content/drive/My Drive/IMDB Dataset 
Cleaned.csv" 
df.to_csv(cleaned_file_path, index=False) 
 
print("\nCleaned dataset saved to:", cleaned_file_path) 
 

C. Code for Text Processing and feature extraction 
# Step 1: Mount Google Drive 
from google.colab import drive 
drive.mount('/content/drive') 
 
# Step 2: Convert Text to Numerical Format using TF-IDF 
import pandas as pd 
from sklearn.feature_extraction.text import TfidfVectorizer 
 
# Define the file path for the cleaned dataset 
file_path = "/content/drive/My Drive/IMDB Dataset 
Cleaned.csv" 
 
# Load the cleaned dataset 
df = pd.read_csv(file_path) 
 
# Inspect the dataset 
print("First few records of the cleaned dataset:") 
print(df.head()) 
 
# Prepare the text data for TF-IDF transformation 
texts = df['cleaned_review'].tolist() 
 
# Initialize the TF-IDF Vectorizer 
# max_features determines the number of words to use 
max_features = 10000  # You can adjust this number based on 
your needs 
tfidf_vectorizer = 
TfidfVectorizer(max_features=max_features) 
 
# Fit and transform the texts using TF-IDF 
X = tfidf_vectorizer.fit_transform(texts) 
 
# Convert the TF-IDF matrix to a dense format 
X_dense = X.toarray() 
 
# Display the shape of the data 

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
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print("\nShape of TF-IDF matrix:", X_dense.shape) 
 
# Display the feature names (words) 
feature_names = tfidf_vectorizer.get_feature_names_out() 
print("\nFirst 20 feature names (words):", feature_names[:20]) 
 
# Determine the number of features 
num_features = len(feature_names) 
print("\nNumber of features (words) used for modeling:", 
num_features) 
 

D. Code for Logistic Regression Model Training, Testing and 
Evaluating: 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import accuracy_score, precision_score, 
recall_score, f1_score, classification_report, 
confusion_matrix, roc_curve, roc_auc_score 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
# Define the file path for the cleaned dataset 
file_path = "/content/drive/My Drive/IMDB Dataset 
Cleaned.csv" 
 
# Load the cleaned dataset 
df = pd.read_csv(file_path) 
 
# Prepare the text data for TF-IDF transformation 
texts = df['cleaned_review'].tolist() 
 
# Initialize the TF-IDF Vectorizer 
max_features = 10000  # Number of words to use 
tfidf_vectorizer = 
TfidfVectorizer(max_features=max_features) 
 
# Fit and transform the texts using TF-IDF 
X = tfidf_vectorizer.fit_transform(texts) 
 
# Convert the TF-IDF matrix to a dense format 
X_dense = X.toarray() 
 
# Convert sentiments to binary labels 
y = df['sentiment'].apply(lambda x: 1 if x == 'positive' else 
0).values 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X_dense, y, 
test_size=0.2, random_state=42) 
 
# Initialize the Logistic Regression model 
model = LogisticRegression(max_iter=1000) 
 
# Train the model on the training data 
model.fit(X_train, y_train) 
 
# Make predictions on the test data 

y_pred = model.predict(X_test) 
 
# Evaluate the model's performance 
accuracy = accuracy_score(y_test, y_pred) 
precision = precision_score(y_test, y_pred) 
recall = recall_score(y_test, y_pred) 
f1 = f1_score(y_test, y_pred) 
classification_rep = classification_report(y_test, y_pred) 
 
print("Evaluation Metrics:") 
print(f"Accuracy: {accuracy}") 
print(f"Precision: {precision}") 
print(f"Recall: {recall}") 
print(f"F1-score: {f1}") 
print("\nClassification Report:") 
print(classification_rep) 
 
# Plot confusion matrix 
conf_matrix = confusion_matrix(y_test, y_pred) 
plt.figure(figsize=(8, 6)) 
sns.heatmap(conf_matrix, annot=True, cmap='Blues', fmt='d', 
cbar=False) 
plt.xlabel('Predicted labels') 
plt.ylabel('True labels') 
plt.title('Confusion Matrix') 
plt.show() 
 
# Plot ROC curve and calculate AUC 
y_pred_proba = model.predict_proba(X_test)[:,1] 
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba) 
auc = roc_auc_score(y_test, y_pred_proba) 
 
plt.figure(figsize=(8, 6)) 
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC curve (AUC = 
%0.2f)' % auc) 
plt.plot([0, 1], [0, 1], color='gray', linestyle='--') 
plt.xlim([0.0, 1.0]) 
plt.ylim([0.0, 1.05]) 
plt.xlabel('False Positive Rate') 
plt.ylabel('True Positive Rate') 
plt.title('Receiver Operating Characteristic (ROC) Curve') 
plt.legend(loc='lower right') 
plt.show() 
 

E. Code for LSTM Model Training, Testing and Evaluating: 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import train_test_split 
from tensorflow.keras.preprocessing.text import Tokenizer 
from tensorflow.keras.preprocessing.sequence import 
pad_sequences 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Embedding, LSTM, 
Dense, Dropout 
from tensorflow.keras.callbacks import EarlyStopping 
from sklearn.metrics import accuracy_score, 
classification_report, confusion_matrix 



 

 

7 

 
# Define the file path for the cleaned dataset 
file_path = "/content/drive/My Drive/IMDB Dataset 
Cleaned.csv" 
 
# Load the cleaned dataset 
df = pd.read_csv(file_path) 
 
# Prepare the text data and labels 
texts = df['cleaned_review'].tolist() 
labels = df['sentiment'].apply(lambda x: 1 if x == 'positive' 
else 0).values 
 
# Tokenize the text data 
tokenizer = Tokenizer(num_words=10000) 
tokenizer.fit_on_texts(texts) 
sequences = tokenizer.texts_to_sequences(texts) 
 
# Pad sequences to ensure uniform length 
max_sequence_length = 100 
X = pad_sequences(sequences, 
maxlen=max_sequence_length) 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, labels, 
test_size=0.2, random_state=42) 
 
# Build the LSTM model 
model = Sequential() 
model.add(Embedding(10000, 128, 
input_length=max_sequence_length)) 
model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2)) 
model.add(Dense(1, activation='sigmoid')) 
 
model.compile(loss='binary_crossentropy', optimizer='adam', 
metrics=['accuracy']) 
 
# Set early stopping to prevent overfitting 
early_stopping = EarlyStopping(monitor='val_loss', 
patience=3) 
 
# Train the model 
history = model.fit(X_train, y_train, epochs=10, 
batch_size=128, validation_split=0.2, 
callbacks=[early_stopping]) 
 
# Evaluate the model 
y_pred = (model.predict(X_test) > 0.5).astype("int32") 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred) 
conf_matrix = confusion_matrix(y_test, y_pred) 
precision = (conf_matrix[1, 1]) / (conf_matrix[1, 1] + 
conf_matrix[0, 1]) 
recall = (conf_matrix[1, 1]) / (conf_matrix[1, 1] + 
conf_matrix[1, 0]) 
f1_score = 2 * (precision * recall) / (precision + recall) 
 
print(f"Accuracy: {accuracy}") 
print("\nClassification Report:") 
print(report) 

print("\nConfusion Matrix:") 
print(conf_matrix) 
print(f"\nPrecision: {precision}") 
print(f"Recall: {recall}") 
print(f"F1 Score: {f1_score}") 
 
# Plot Confusion Matrix 
plt.figure(figsize=(8, 6)) 
sns.heatmap(conf_matrix, annot=True, cmap='Blues', fmt='g', 
cbar=False) 
plt.xlabel('Predicted Labels') 
plt.ylabel('True Labels') 
plt.title('Confusion Matrix') 
plt.show() 
 

F. Code for Bi-LSTM Model Training, Testing and 
Evaluating: 
import torch 
import torch.nn as nn 
import torch.optim as optim 
from torch.utils.data import DataLoader, TensorDataset 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score, precision_score, 
recall_score, f1_score 
from keras.preprocessing.text import Tokenizer 
from keras.preprocessing.sequence import pad_sequences 
 
# Define the file path for the cleaned dataset 
file_path = "/content/drive/My Drive/IMDB Dataset 
Cleaned.csv" 
 
# Load the cleaned dataset 
df = pd.read_csv(file_path) 
 
# Tokenize the text data 
texts = df['cleaned_review'].tolist() 
labels = df['sentiment'].apply(lambda x: 1 if x == 'positive' 
else 0).values 
 
# Convert texts to sequences 
tokenizer = Tokenizer(num_words=10000) 
tokenizer.fit_on_texts(texts) 
sequences = tokenizer.texts_to_sequences(texts) 
 
# Pad sequences to ensure uniform length 
max_sequence_length = 100 
X = pad_sequences(sequences, 
maxlen=max_sequence_length) 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, labels, 
test_size=0.2, random_state=42) 
 
# Create PyTorch tensors 
X_train = torch.tensor(X_train, dtype=torch.long) 
y_train = torch.tensor(y_train, dtype=torch.float) 
X_test = torch.tensor(X_test, dtype=torch.long) 
y_test = torch.tensor(y_test, dtype=torch.float) 
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# Create DataLoader 
train_dataset = TensorDataset(X_train, y_train) 
test_dataset = TensorDataset(X_test, y_test) 
batch_size = 32 
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True) 
test_loader = DataLoader(test_dataset, batch_size=batch_size) 
 
# Define Bi-LSTM model 
class BiLSTM(nn.Module): 
    def __init__(self, vocab_size, embedding_dim, hidden_dim, 
output_dim): 
        super(BiLSTM, self).__init__() 
        self.embedding = nn.Embedding(vocab_size, 
embedding_dim) 
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, 
bidirectional=True, batch_first=True) 
        self.fc = nn.Linear(hidden_dim * 2, output_dim) 
        self.dropout = nn.Dropout(0.5) 
 
    def forward(self, x): 
        embedded = self.embedding(x) 
        lstm_out, _ = self.lstm(embedded) 
        lstm_out = self.dropout(lstm_out) 
        out = self.fc(lstm_out[:, -1, :]) 
        return out 
 
# Instantiate the model 
vocab_size = len(tokenizer.word_index) + 1 
embedding_dim = 128 
hidden_dim = 64 
output_dim = 1 
model = BiLSTM(vocab_size, embedding_dim, hidden_dim, 
output_dim) 
 
# Define loss function and optimizer 
criterion = nn.BCEWithLogitsLoss() 
optimizer = optim.Adam(model.parameters(), lr=0.001) 
 
# Train the model 
num_epochs = 5 
for epoch in range(num_epochs): 
    model.train() 
    running_loss = 0.0 
    for inputs, labels in train_loader: 
        optimizer.zero_grad() 
        outputs = model(inputs) 
        loss = criterion(outputs.squeeze(), labels) 
        loss.backward() 
        optimizer.step() 
        running_loss += loss.item() 
    print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss / len(train_loader)}") 
 
# Evaluate the model 
model.eval() 
predictions = [] 
true_labels = [] 
with torch.no_grad(): 

    for inputs, labels in test_loader: 
        outputs = model(inputs) 
        preds = torch.round(torch.sigmoid(outputs)) 
        predictions.extend(preds.tolist()) 
        true_labels.extend(labels.tolist()) 
 
# Calculate evaluation metrics 
accuracy = accuracy_score(true_labels, predictions) 
precision = precision_score(true_labels, predictions) 
recall = recall_score(true_labels, predictions) 
f1 = f1_score(true_labels, predictions) 
print(f"Accuracy: {accuracy}") 
print(f"Precision: {precision}") 
print(f"Recall: {recall}") 
print(f"F1 Score: {f1}") 
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