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Abstract—Lung fibrosis is a chronic and progressive illness 

where there is pathologic tissue scarring, which affects lung 

architecture and respiratory organ functioning. It is caused by 

several factors, including idiopathic pulmonary fibrosis (IPF), 

radiation-related injury, tumour-related fibrosis, and post-

COVID-19 complications, and all of them are associated with 

similar pathophysiology. This review investigates and summarises 

studies published from 2015 to 2025 on biological processes, 

clinical symptoms, and technological innovations in the diagnosis 

and monitoring of lung fibrosis. It emphasises the way that 

artificial intelligence (AI) and deep learning (DL) models, such as 

quantitative computed tomography (CT) and convolutional neural 

networks (CNNs), have enhanced the process of early detection, 

disease classification, and medical progression forecasting. The 

computational models, such as the agent-based and Monte Carlo 

simulations, which are used to study fibrotic dynamics, are also 

discussed in the review. In general, the combination of molecular 

knowledge, imaging, and AI-based systems can be considered a 

major next step in the creation of personalized diagnoses and 

better treatment outcomes in chronic fibrotic lung diseases.   

 
Index Terms— Lung Fibrosis, Idiopathic Pulmonary Fibro- sis, 

Artificial Intelligence, Deep Learning, Convolutional Neural 

Networks, Quantitative Computed Tomography, Post–COVID-19 

Fibrosis.  

 

I. INTRODUCTION 

ORLD Lung Day highlights the international significance 

of respiratory health, and it aims to create awareness of 

the most significant airborne diseases like chronic obstructive 

pulmonary disease (COPD), asthma, tuberculosis, lung cancer, 

and the impacts of air pollution [1]. Lung fibrosis is a 

complicated and time-consuming diagnosis that requires 

clinical personnel to process a large number of high-resolution 

CT images to identify insidious fibrotic alterations. The non- 

uniform nature and large volumes of imaging data render 

manual interpretation challenging, and automated, intelligent 

 
 

solutions are in demand to precisely determine and measure 

fibrosis.  

A. Background of Lung Fibrosis 

Lung fibrosis is a chronic disease in which the lung tissue 

becomes thick and rigid, making breathing difficult 

andreducsing oxygen transport. The most severe form, 

idiopathic pulmonary fibrosis (IPF), typically occurs in 

individuals more than 60 years old, and in most cases, 

progressive difficulty in breathing occurs within a few years It 

occurs when the lungs are damaged repeatedly, and this may be 

occasioned by smoking or work exposures or infections. 

Genetics are also a cause of some people being more prone to 

lung diseases and less able to heal easily, which is caused by 

some inherited traits. Knowing these factors will support the 

prevention of the disease in its early stage and facilitate the 

development of individual strategies that will slow it down [2]. 

It occurs when the lungs are damaged repeatedly, and this may 

be occasioned by smoking or work exposures or infections. 

Genetics are also a cause of some people being more prone to 

lung diseases and less able to heal easily, which is caused by 

some inherited traits. Knowing these factors will support the 

prevention of the disease in its early stage and facilitate the 

development of individual strategies that will slow it down [2]. 

B. Causes and Pathological Variants 

There are several etiologies of lung fibrosis, such as id- 

iopathic pulmonary fibrosis (IPF), radiation-induced lung fi- 

brosis (RILF), tumor-associated fibrosis, and post-COVID-19 

fibrosis. Lung fibrosis caused by COVID-19 and radiation- 

induced pulmonary fibrosis (RIPF) both damage and scar tissue 

in similar ways. In both cases, inflammation hurts the lungs and 

sets off strange repair processes that make the lungs stiff and 

make it hard to breathe. The biological processes at play, such 

as the immune response and cellular stress pathways, seem to 
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be closely connected. Studying these common mechanisms 

may allow us to find strategies to protect lung tissue, reduce 

inflammation, and mitigate damage associated with radiation or 

viral infection [3]. 

C. Advances in Diagnostic Imaging and AI 

Technological advances facilitate the detection and evalu- 

ation of lung fibrosis. Older imaging techniques like high- 

resolution computed tomography (HRCT) will soon be re- 

placed and enhanced with tools like CT analysis and artificial 

intelligence (AI) models. Deep learning (DL) and convolutional 

neural networks (CNNs) have been very successful at detecting 

interstitial patterns, quantifying fibrotic areas, and forecasting 

disease progression. More recent publications have highlighted 

the value of AI and DL applied to CNNs on HRCTs for the 

recognition of lung fibrosis. CNN models recognize distinct 

patterns such as reticular and honeycomb, thus improving 

diagnostic efficiency and decreasing the need for biopsies; 

however, the use of small training datasets and segmentation 

problems still hinders overall applicability [4]. The conceptual 

framework of this research review on lung fibrosis, including 

important elements, methods of inquiry, and research design 

aspects, is presented in Fig 1. 

 

Fig. 1. Conceptual Structure of Lung Fibrosis Research Review. 

 

II. METHODOLOGY 

This review was conducted according to Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines. The purpose was to review and appraise clinical 

writings, images, and artificial intelligence studies, which 

pertain to the diagnosis and treatment of fibrotic lung dis- ease, 

including IPF and ILDs. The review protocol has been planned 

in accordance with the PRISMA 2020 standards and follows the 

earlier published medical imaging and computational 

diagnostics evidence synthesis frameworks.  

A. Search Strategy 

The literature search was conducted across the PubMed, 

Scopus, Web of Science, and IEEE Xplore databases to identify 

research on lung fibrosis published between 2015 and 2025. 

The selection of these databases was intended to cover both 

clinical and technological research positions related to 

pulmonary fibrosis. Also, imaging protocols. All the chosen 

works were peer- reviewed articles. Reference lists and grey 

literature sources (institutional repositories, preprints, and 

theses) were manually. 

B. Inclusion Criteria 

The inclusion criteria were established to identify articles 

that presented clinical or technological information on lung 

fibrosis. The inclusion criteria included the works having 

clinical or pathological data, such as characterization of the 

disease, biomarkers, or treatment outcome. The use of AI- 

based diagnostic structures, including image segmentation, 

classification, or prognosis prediction with the use of CT, 

HRCT, or histopathology data, was also incorporated in the 

studies. The included studies were those that involved human 

subjects and were published no earlier than 2015. Quantitative 

or qualitative measures of diagnostic performance, model 

performance, and data characteristics had to be reported in 

articles to ensure that the evidence reviewed was 

methodologically sound and applicable to modern AI-based 

research in lung fibrosis. 

C. Exclusion Criteria 

This implies that only credible and comprehensive re- 

searches were used in the review. Animal-based research, 

laboratory experiments or theoretical studies were not factored 

in because the studies were about the clinical aspects of human 

beings. The review also managed to exclude short or informal 

publications, such as conference papers, editorials, or opinions, 

that do not present the entire research methods or results. The 

research that lacked informational content, extremely small 

samples (less than 20 individuals), or lacked a report of their 

findings in the customary manner was also excluded. Lastly, 

only articles in English were included, and any overlaps across 

databases were eliminated to maintain accurate data. Table I 

outlines the study selection process, as guided by PRISMA 

2020. 

 
TABLE I 

SUMMARY OF STUDY SELECTION PROCESS BASED ON PRISMA 

GUIDELINES 

PRISMA Stage Records(n) Notes 

Records identified 

through database 
searching  

480 PubMed, Scopus, IEEE, Web 

of Science 

Additional records 

identified through other 

sources 

25 Manual search & grey 

literature 

Total records identified 505  
Records after duplicates 

removed 

420 85 duplicates removed 

Records screened 

(title/abstract) 

420 - 

Records excluded 330 Irrelevant, outside scope 
Full-text articles 

assessed 

90 - 

Full-text articles 

excluded 

59 Small sample size, ani- 

mal/preclinical, simulation- 
only, case reports. 

Studies included in the 

qualitative synthesis 

31 Included in review   

Studies included in 

quantitative synthesis 
(meta-analysis) 

0 Not performed 
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III. LITERATURE REVIEW 

Batah et al. [5] illustrated how deep learning-based AI 

models can be used to analyze the HRCT lung images and 

classify and detect fibrotic patterns (such as honeycombing and 

ground-glass opacities) automatically. By employing 

Convolutional Neural Networks alongside quantitative features 

of CT images, it achieved an 85% accuracy. Among its many 

automated features, precise outputs remain one of this 

research’s highlights. However, dataset bias and small sample 

sizes remain critical weaknesses. Valand et al. [6] investigated 

a study at Neuro computing presented an artificial intelligence-

driven deep- learning architecture to the early detection of lung 

fibrosis based on the computed tomography (CT) imaging data. 

The model used convolutional neural networks (CNNs) and 

transfer learning to improve the accuracy of fibrotic pattern 

classification. Automation and precision were listed as 

strengths, but the lack of balance in the dataset, limited 

diversity, and the possibility of overfitting limit its clinical 

application. Yang et al. [7] studied developments in 

computational lung ultrasonography (LUS) for the diagnosis of 

respiratory conditions such as ARDS and COVID-19. For 

artefact detection and segmentation, the study contrasted deep 

learning (CNN, U-Net) with model-based techniques (e.g., 

Radon transform, ADMM). Real-time, explainable imaging is 

one of its strengths; generalisation problems, noise sensitivity, 

and a lack of annotated data are its drawbacks. Colombi et al. 

[8] explained the use of high-resolution computed tomography 

(HRCT) in AI-driven assessment of interstitial lung diseases 

(ILDs). For pattern classification, segmentation, and prognosis 

prediction, the study emphasises machine learning and deep 

learning (CNNs). Human-level accuracy and objective 

quantification are among its strong points; dataset 

heterogeneity, small sample sizes, and the requirement for 

standardized multicenter validation are among its weaknesses. 

Zhang et al. [9] studied 50 patients with solitary fibrous tumors 

of the chest (33 pleural, 17 pulmonary) were retrospectively 

examined to evaluate malignancy indicators, diagnosis, and 

treatment. Histopathological validation and CT confirmation 

were obtained for every case, and immunohistochemistry 

revealed positive results for CD34, Vimentin, Bcl-2, STAT6, 

and CD99. The results of surgery or radiofrequency ablation 

were positive, and the main indicators of malignancy were high 

Ki-67, CT necrosis, chest tightness, and advanced age. Limited 

therapy comparisons and a small single-center sample were 

among the limitations. Marchioni et al. [10] Examine how 

mechanical forces and stretching in the lungs can exacerbate 

fibrosis. Particularly in IPF, stiff and fragile lungs are more 

susceptible to dinjury wleadingto excess tissue accumulation 

and inadequate repair. The review explains how these forces 

impact lung cells and tissue using research on both humans. Its 

ability to relate lung mechanics to treatment concepts is one of 

its strong points; its main drawbacks are that it mostly depends 

on laboratory research and lacks solid evidence from human 

trials. Shepelkova et al. [11] compared TB patients with and 

without previous COVID-19 infection. They discovered that 

patients with TB after COVID-19 had higher levels of passive 

and active inflammatory molecules than those without TB after 

COVID-19, altered expression of key inflammatory miRNAs in 

blood and lung tissues, and more severe lung inflammation. The 

changes were assessed using tissue and blood laboratory tests. 

Although the study design was limited to a small, single-centre 

study and lacked long-term follow-up, the study interweaving 

tissue, molecular, and miRNA data integrated a design that 

illustrated enduring inflammation. Kumar et al. [12] discuss the 

use of Machine Learning (ML) to identify COVID-19, and 

more serious lung diseases like pneumonia and lung cancer 

from medical images. They indicated positive correlation 

predictive value in previous literature, and summarized the 

imaging and datasets (X-ray, CT, MRI, PET) with different ML 

techniques (CNN, transfer and ensemble learning) during a 

given research period. Reliance on previous research, dataset 

bias, and overlooking of rare or atypical diseases, were some of 

the limitations. Thoroughness and coverage of the topic, and 

emerging recommendations were the key strengths. Dorosti et 

al. [13] examined the use of Convolutional Neural Networks 

(CNNs) for the computerised detection of Chronic Obstructive 

Pulmonary Disease (COPD) from CT scans and the 

comparative influence of manual and automated window 

settings on processing speed. Using 7,194 images, they found 

that manual adjustments provided the greatest improvement in 

accuracy (AUC 0.86). This study’s strengths include 

improvement in detection, relevance to the clinical 

methodology, automation, and method validation. However, 

the study is limited due to the single-center data, the scope of 

COPD, and the lack of external validation. Larici et al. [14] 

discuss the use of imaging techniques to study fibrotic lung 

diseases, underscoring the utility of high-resolution CT for 

diagnosing, monitoring, and assessing complications of 

progressive fibrosis. The authors concatenate imaging guide- 

lines, honing in on assisting radiologists in pattern detection and 

imaging for best practices in subsequent follow-ups. The review 

is especially strong in providing practical and clear suggestions. 

On the other hand, lacthe review suffers from a void of 

resubmission, a lack of new data, limited quantitative data, and 

gaps in the expert opinion. Giordani et al. [15] examined the 

fibrous zeolites erionite and offretite along with lung fluid 

simulants and atomic force microscopy. They observed that 

erionite is corrosive in acidic environments but expands in 

neutral and basic conditions, which explains why it is much 

more toxic and therefore more strongly associated with 

mesothelioma. The primary contribution of the study is 

impactful nanoscale, real-time observations and insights into 

toxicity, and the primary limitations of the paper are the use of 

non-fibrous crystals, a shortexperimentalf duration, and some 

unclear particle composition. Shah [16] analyses machine 

learning methods for lung cancer detection using CT, MRI, and 

X-ray images is analyzed. Data-driven algorithms like DNN, 

KNN, and SVM yield strong accuracy scores of 95%, yet biased 

datasets, narrow scope images, and processing complexities are 

factors on why these approaches still aren’t ideal. The authors 

summarize progress of effective models and proposed hybrid 

methods for improved prompting. Abidi et al. [17] describe how 

oil from Pistacia lentiscus defends rats against the pulmonary 

toxicity and oxidative stress caused by bleomycin. In those 
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researchers’ next work, they describe how fibrous mordenite 

from Northern Italy contains very fine, respirable and possibly 

health damaging fibers. These studies describe the natural 

protective resources and the minerals which are hazardous. 

Baratella, et al. [18] describe the use of high-resolution CT 

scans for evaluating the progression of pulmonary fibrosis in 

interstitial lung diseases. The researchers describe visual 

scoring and suggest more collaborative, multidisciplinary 

approaches in the technical protocols for identifying candidates 

for antifibrotic therapy. The strengths are practical and clear 

guidance but rely on expert opinion without original data and 

potential variability of observers are shortcomings. Li et al. [19] 

studied fibrous interstitial lung abnormalities (ILA) and used 

quantitative CT to predict lung function decline. They found 

that airway measurements such as wall thickness and luminal 

area, in conjunction with age and gender, can predict reduced 

pulmonary function with an AUC of 0.84. They identified non-

invasive CT biomarkers for early detection of reduced 

pulmonary function, though the study was limited by single-

centre data, a small sample size, and a lack of long-term follow-

up. Buccardi et al. [20] demonstrated an automated method 

using micro-CT and deep learning was developed to track lung 

fibrosis in mice. It outperforms manual analysis by a factor of 

45, correlates with tissue analysis, and evaluates disease 

progression and reversal on Nintedanib. Time efficiency, 

precision, fewer animals needed, and longitudinal studies are 

major strengths. Limitations are small sample size, sole focus 

on bleomycin damage, and untested applicability to other 

models, or to people. Harr et al. [21] focused on the PEG-FUD 

fibronectin-targeting probe for early detection of lung fibrosis 

in mice. Damaged lungs showed increased uptake 

demonstrating the probe’s correlation with disease severity. 

This implies the probe may be capable of non-invasive 

detection in the early stages of the disease. In terms of accuracy, 

the potential for clinical use in the future, and the non-invasive 

nature of the probe highlight its strengths, while the limitations 

include focusing on only mice, the short-term nature of the 

assessment, and small sample size. Chen and Slater.[22] 

analyzed solitary fibrous tumors of the liver (SFTL) which state 

most are benign; however, about 18% can be malignant. They 

describe a case of a 61-year-old man with malignant SFTL with 

recurrence and metastasis six years after surgery. Strengths 

include a comprehensive review and detailed insights into the 

case; weaknesses include the rarity of the tumour, reliance on 

retrospective accounts, and vague imaging results. Cao et al. 

[23] utilized computer modelling to forecast potential lung 

damage caused by metal nanoparticles. They identified particle 

and cellular haracteristicls that best indicate damage and 

confirmed this in cellular and murine studies. Identifying 

critical safety indicators and adopting a trustworthy paradigm 

stand out as strengths, while the drawbacks include focusing on 

a single class of nanoparticles, limited cell-type testing, and the 

need for additional human validation. Wu et al. [24] reported a 

rare case of a 25-year-old male with a malignant solitary fibrous 

tumour in the brain that recurred aggressively and metastasised 

to the lungs and bones. The researcher described diagnosis via 

imaging and tissue sample analysis. Detailed tumour analysis 

and improved awareness of aggressive behaviour are strengths 

of this study. Limitations include a lack of generalizability due 

to the single case and a brief follow-up. Ajouz et al. [25] 

reviewed solitary fibrous tumours of the pleura and noted that 

any kind of surgical removal, whether open, VATS, or robotic, 

must be complete to eliminate recurrence risk. The reviewers 

have pointed out a real lack of source material when it comes to 

case studies, especially with a focus on long-term implications. 

They also noted a lack of original source materialforo practical 

recommendations on surgical guidance and minimally invasive 

techniques. However, a significant body of literature is 

available on the NAB2-STAT6 gene marker and imaging 

studies. They also recognized the utility of case studies, 

especially with a focus on implementing surgical 

recommendations. Ichiki et al. [26] document a rare case 

involving a lung solitary fibrous tumoru in a 68-year-old 

woman, which was successfully removed via minimally 

invasive VATS. The study also discusses tumor characteristics 

and the surgical approach taken. The case report’s strengths are 

the thoroughness of the pathology and surgical descriptions 

while its limitations pertain to the single case nature of the study 

and the short follow-up period with which the findings may be 

generalized. Sturgil et al. [27] analysed data from 94 

pneumonia-related ARDS cases, focusing on COVID-19 versus 

non-COVID cases. CT scans of COVID-19 survivors showed 

greater lung scarring, but the COVID-19-positive patients and 

the non-COVID patients exhibited similar physical functioning. 

Overall, both groups exhibited comparable outstanding mental 

health issues. A direct comparison of COVID versus non-

COVID cases, and the attention to post-ICU recovery 

difficulties, are substantial. However, the study is limited by the 

small number of patients, a single centre approach, and a 

retrospective design. Hasan [28] generated two humanised 

mouse models to investigate lung fibrosis and test drugs, such 

as Nintedanib. The HSC model was stable, safe, and better 

approximated human immune responses. Strong points include 

testing human-specific therapies and achieving consistent 

results, while drawbacks include potential side effects from the 

PBMC model, a focus on a single drug, a small sample size, and 

the need for human validation. Nowak et al. [29]. The two 

computer tools were tested in this study, which quantified the 

extent of lung scarring in CT scans of 45 patients with 

idiopathic pulmonary fibrosis (IPF). One of them will examine 

the nature of the scar (ground-glass, small lines, honeycomb-

like sites), and the other will merely categorise the lung tissue 

as normal or abnormal. The simple tool was twice as quick; both 

tools provided nearly identical results, and their 3-year survival 

predictions were also similar. This demonstrates that, despite 

being fast and easy, there are other approaches that doctors can 

rely on. Nonetheless, the sample was small, applied the data of 

one hospital, and it has to be tested on a larger group of patients. 

Cogno et al. [30-36] researchers demonstrated created a new 

computer model to study lung scarring caused by radiotherapy 

for cancer. By combining two advanced simulation methods, 

the model tracks cell damage over time and compares different 

radiation plans. It shows that splitting radiation doses and using 

even proton doses reduces lung damage compared to traditional 
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photon methods, offering a better prediction tool than older 

models. However, it simulates only a small lung section and 

relies on computer-based assumptions rather than real patient 

data, so further testing is needed to confirm its use in humans. 

The summary of key studies is shown in Table II. 

TABLE II 

SUMMARY OF KEY STUDIES ON LUNG FIBROSIS (2015–2025) 

Author(s) 
Journal /  
Conference Objective Method / Approach Key Findings Limitations 

Batah et al. 

 [5] 

Respiratory 

Medicine 

Identify fibrotic 

patterns in HRCT lung 
images using AI. 

Convolutional Neural 

Networks (CNNs) with 
quantitative CT features. 

85% accuracy 
in detecting honeycombing  
and ground-glass 

opacities. 

Dataset bias, small 

sample size. 

Valand et al.  

[6] 

Neurocomputi

ng 

Early detection of 
lung fibrosis from CT 

using deep learning. 

CNN with transfer 
learning. 

Improved accuracy in 
fibrotic pattern 

classification. 

Imbalanced dataset, 
overfitting risk, limited 
clinical validation. 

Yang et al.  

[7] 

IEEE 

Transactions 

on 
Ultrasonics, 

Ferroelectrics, 

and Frequency 

Control 

Computational lung 
ultrasound for 
ARDS/COVID-19 
diagnosis. 

Deep learning (CNN, 
U-Net) vs. model-based 

methods. 

Real-time, 
explainable imaging; 

effective artifact 

segmentation. 

Generalization issues, 
noise sensitivity, lack of 
annotated data. 

Colombi et al.  
[8] 

Diagnostics AI-driven HRCT 
Assessment of 

Interstitial lung diseases 

(ILDs). 

Machine learning and 
deep learning (CNNs). 

Human-level 
accuracy in pattern 

classification and 

prognosis prediction. 

Dataset heterogeneity, small 
samples; needs multicenter 

validation. 

Zhang et al.  

[9] 

Frontiers in 

Oncology 

Evaluate malignancy 
indicators in solitary 
fibrous tumors of the chest. 

Histopathology 
and CT  imaging 

validation. 

High Ki-67, CT 
necrosis, chest tightness, 

advanced age as 
malignancy markers. 

Single-center, 
small sample, 

limited therapy 
comparison. 

Marchioni et al. 

[10] 
IJMS Study mechanical 

forces in lung fibrosis 
exacerbation. 

Review of human and 

laboratory studies. 
Links lung mechanics to 

fibrosis progression; 

suggests therapeutic 

targets. 

Relies on lab studies, 
lacks human trial 
evidence. 

Shepelkova et al. 
[11] 

IJMS Compare TB  patients 
with/without 
prior COVID-19 infection. 

Tissue and blood 
miRNA analysis. 

Post-COVID   TB 
patients show more severe 

inflammation and altered 
miRNA expression. 

Single-center, 
small sample, no long-

term follow- up. 

Kumar et al.  

[12] 

BMC Medical 
Imaging 

Review ML methods for 
lung dis- ease detection 
from medical images. 

Systematic review of 

CNN, transfer learning, 
and ensemble methods. 

Summarizes imaging 

datasets and ML 
techniques; highlights 

emerging 

recommendations. 

Dataset bias, over- 

looks rare diseases, 
reliance on prior studies. 

Dorosti et al. 

 [13] 

Computers in 
Biology 

and Medicine 

Optimize CNN for 
COPD detection from 

CT. 

Manual vs. automated 
window setting 

comparison. 

Manual adjustment 
improved accuracy (AUC 

0.86). 

Single centre data, 
limited to COPD, no 

external validation. 

Larici et al. [14] European 

Radiology 

Imaging guidelines 
for fibrotic lung diseases. 

Narrative review with 
expert opinion. 

Practical imaging 

recommendations for 
diagnosis and monitoring 

Lacks new data, 
quantitative evidence,  and 

expert consensus gaps 

Buccardi e t a l  

[20] 
Respiratory 

Research 

Automated micro- 

CT deep learning for 
fibrosis tracking in mice. 

Micro-CT + deep 

learning vs. manual 
analysis. 

45× faster than 

manual, correlates with 
tissue analysis, tracks 

disease 

progression/reversal. 

Small sample, 

bleomycin model only, not 
tested on humans. 

Nowak et al.  

[29] 

Scientific 

Reports 

Compare two AI 
tools for IPF scarring 

quantification. 

Texture analysis vs. 
binary classification. 

Both tools showed 
similar 3-year survival 

prediction; simple tool was 

faster. 

Small single-center 
dataset, needs larger 

validation. 

Cogno et al.  
[30] 

Communicatio
ns 
Medicine 

Develop a mechanistic 
model of radiotherapy-

induced lung fibrosis. 

Agent-based + Monte 
Carlo simulation. 

Shows proton therapy 
and dose splitting reduce 
lung damage; better than 
older models. 

Simulates small 
lung section, uses 

assumptions, needs human 

validation. 

A. Domain-Based Analysis For Ai And Imaging Techniques 

in Lung Fibrosis 

This research discusses various AI-driven diagnostic and 

imaging techniques applicable to different clinical and 

pathological domains of lung fibrosis. These domains employ 

distinct artificial intelligence methodologies and advanced 

imaging techniques tailored to their specific features and 

clinical needs. A concise analysis categorizes these domains 

into distinct classifications. The categorizstion of these domains 

according to their attributes, causative factors, imaging 

patterns, and utilizsd methodologies is encapsulated in the table 

below, emphasising the most pertinent and commonly 

employed AI and quantitative imaging techniques for each 

domain. Classification of Lung Fibrosis Domains with 

Associated AI-Driven Summarizstion Techniques is 

highlighted in Table III. 
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TABLE III 

CLASSIFICATION OF LUNG FIBROSIS DOMAINS WITH ASSOCIATED AI-DRIVEN SUMMARIZATION TECHNIQUES 

Domain / Disease Type Useful/Desired AI & Imaging Approaches Worked in Literature (References) 

Idiopathic Pulmonary 

Idiopathic Pulmonary 

CNN-based HRCT classification, Quantitative CT, Deep learning 

segmentation, Progression prediction, Visual scoring 

[4-6], [8],[10],[14],[18-21],[27],[28],[29] 

Post-COVID-19 Lung Fibrosis CNN for ARDS/fibrotic pattern detection, Ground-glass & honeycombing 

analysis, Quantitative CT, Prognostic modeling 

[5],[7],[11],[12],[27],[30] 

Radiation-Induced Lung 

Fibrosis (RILF) 

Quantitative CT, Mechanistic modeling (Agent-based + Monte Carlo), CNN-

based fibrosis quantification, Proton vs Photon comparison 

[3],[8],[18],[30] 

Interstitial Lung Diseases 
(ILDs) 

AI-driven HRCT evaluation, CNN segmentation & classification, Visual 
scoring protocols, Multidisciplinary antifibrotic guidance 

[8],[14],[18],[19],[20],[21],[27],[29] 

Progressive Pulmonary Fibrosis HRCT visual scoring, Quantitative CT biomarkers, Deep learning prognosis 

models, Therapy response assessment 

[14],[18],[19],[20],[21],[27],[29] 

Preclinical / Animal Models Automated micro-CT + Deep learning, Bleomycin mouse model analysis, 

Longitudinal tracking, Therapy response (Nintedanib) 

[20],[21],[28] 

General Lung Fibrosis & 
Fibrotic ILA 

General Lung Fibrosis & Fibrotic ILA [4],[5],[6],[7],[8],[9],[12],[13],[16],[19], 
[23],[27],[29],[30] 

 

IV. LUNG SCARRING: THEMATIC REVIEW FACTORS, 

IMAGING, AND AI-BASED ASSESSMENT 

A. Causes / Risk Factors 

The damage to the lungs occurs as a result of harmful 

particles constantly penetrating the airways and being 

improperly removed by the body. Lung tissue becomes stiffer 

and less pliable due to factors such as cigarette smoke, a 

polluted environment, factory dust, and exposure to chemicals, 

which are slowly causing it to become harder and less flexible. 

There are also some infections that have long-term effects, 

making the lungs less healthy. The aging process also impairs 

the repair mechanism of the body, and scar-like tissues are 

produced instead of healthy replacement cells. All in all, poor 

defence mechanisms and exposure to the environment 

accelerate the progression of this condition.  

B. Imaging Technique 

Today, detailed body scans are the most widespread method 

for detecting stiff and damaged lung areas. These scans reveal 

distinctive patterns that help specialists gauge the extent of the 

condition's progression. Other equipment, such as ultrasound, 

might be useful in emergency cases, and simple X-rays can only 

provide general details. Nevertheless, the experience of an 

imaging expert usually determines the final assessment, leading 

to differences in accuracy. This highlights the increasing 

demand for more standardised technology-based systems. 

Figure 2 shows the most prominent imaging approaches that 

will be used to study lung fibrosis during 2015-2025. 

• AI Models & Performance: The AI technologies assist in 

decreasing the human error in decoding body images. Deep 

learning models can notice the smallest abnormalities, which 

could have been overlooked in case a manual check is 

conducted. The level of scarring is also determined in these 

systems through analysis of texture and lung alterations, 

providing a more precise assessment of damage. Other 

researchers indicate that AI is capable of alleviating invasive 

tests by giving credible early warnings. As times move on, AI 

is becoming better at monitoring and assisting in the formation 

of better treatment plans. 

Fig. 2. Imaging techniques used in lung fibrosis research 

(2015–2025) 

• Treatment Advances: The use of modern technology is 

enhancing the process of making decisions in treatment. Digital 

scoring and AI-based monitoring will facilitate estimating 

whether a patient's condition is increasing or decreasing 

gradually. The priority in the future is direct care, where an 

individual is given a treatment regimen tailored to their specific 

lung damage pattern. Because of the advancements in artificial 

intelligence, the ability to provide better and more innovative 

options for treatment and recovery will increase significantly. 

Table IV summarises the key applications of AI in the study of 

pulmonary fibrosis. 
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TABLE IV 

AI BASED APPLICATIONS IN PULMONARY FIBROSIS 

Applications Pros  Cons Key Results 

AI-based diagnosis of pulmonary fibrosis on CT. Improves accuracy; reduces need 

for biopsy. 

Small dataset; segmentation 

limits. 

Enhanced detection of fibrosis 

patterns. 

AI analysis of COVID-19 ARDS lung images High accuracy (85%); precise 

outputs. 

Small sample; biased. Successfully identifies fibrotic 

patterns. 

Genetic & epigenetic data integration for fibrosis 

prediction. 

Early detection support. Dataset diversity issues; over-

fitting risk. 

Epigenetic changes improve 

predictive modelling. 

Computational lung ultrasonography for 

ARDS/COVID-19. 

Real-time detection; explainable; 

non-invasive. 
Generalisation issues; limited 

labels. 

Effective segmentation of 

abnormalities. 

AI-driven HRCT evaluation of interstitial lung 
disease 

Human-level accuracy; prognosis 
support. 

Small dataset; heterogeneity. Accurate quantification of 
fibrotic regions. 

AI-based diagnosis of pulmonary fibrosis on CT. Improves accuracy; reduces need 

for biopsy. 

Small dataset; segmentation 

limits. 

Enhanced detection of fibrosis 

patterns. 

V. RELATED WORK 

The table 5 clearly illustrates the key features of several 

studies spanning a variety of AI-assisted diagnostic domains. In 

contrast to previous studies that primarily examine single 

domain approaches, this review expands to include more 

advanced components such as the integration of HRCT-AI, 

quantitative analysis of CT data, and mechanistic modeling, 

along with micro-CT deep learning, genomics, explainable AI, 

and therapy-response prediction. The comparison illustrates the 

fully integrated, cross-domain breadth of this review that 

clearly distinguishes it from the other, disorganized approaches. 

The list comparison factor is described as below: F1: Multi- 

Domain Coverage, F2: AI + HRCT Integration, F3: 

Quantitative CT F4: Mechanistic Modelling (ABM/Monte- 

Carlo) F5: Post-COVID Fibrosis F6: Preclinical Micro-CT + 

DL F7: Genomic/Epigenetic Integration F8: Explainable AI F9: 

Therapy Response Prediction F10: Combined Classification 

Table V.  
TABLE V 

AI BASED APPLICATIONS IN PULMONARY FIBROSIS 

Authors F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Christe [4] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Batah [5] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

Valand [6] ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 

Yang [7] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ 

Colombi [8] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Dorosti [13] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Shah [16] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Baratella [18] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ 

Li [19] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Buccardi [20] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ 

Harr [21] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 

Sturgil [27] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

VI. FUTURE DIRECTIONS 

AI-assisted imaging captures more intricate details than 

standard imaging techniques, making it easier to identify 

slungscarring. This technology lessens the need for human 

oversight, and the ability to quickly identify small changes in 

lung tissue could improve treatment options. The studies, 

however, are limited in scope. This is caused by small sample 

sizes, unregulated imaging techniques, and the black-box nature 

of the AI in use. Currently, the best AI systems work in 

conjunction with human specialists, and even in the future, the 

gold standard of medical imaging will be human evaluation. For 

future studies to be more valuable and used more widely in 

clinical practice, one hopes for the use of large, multicenter 

datasets, greater data transparency, and AI explainability for 

clinical integration. Figure 3 compares the precision of AI-

based solutions and traditional manual techniques. 
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Fig. 3. Comparison Chart: AI vs. Manual Accuracy 

Table V clearly illustrates the key features that several future 

investigations should concentrate on building large, diverse 

image datasets to boost the generalisation of AI models across 

different demographics and imaging devices. Fully addressing 

explainable AI is needed to improve acceptance of automated 

predictions in decision support. There is an opportunity for 

integrated imaging to personalise risk predictions and achieve 

earlier interventions by adding genetic and biomarker data. 

Furthermore, CT and ultrasound real-time monitoring systems 

need to be enhanced to safely and accurately manage the 

progressive stages of disease with minimal radiation. To 

confidently move these technologies from the research phase to 

everyday, practised solutions, close partnerships among 

engineers, radiologists, and clinical decision-makers will be 

essential. Stiffened, deteriorating lungs, improvements in data, 

transparency, and clinical testing must be made. The key 

potential research directions in the diagnosis and analysis 

methods of lung fibrosis are outlined in Fig 4.

 
Fig. 4: Future research directions in lung fibrosis detection and analysis 

VII. CONCLUSION 

Lung fibrosis is a complicated type of lung disease that is 

very deadly, with almost no treatment options available. Things 

like radiation, pulmonary fibrosis, and even COVID-19 can all 

cause lung fibrosis. From 2015 to 2025, artificial intelligence 

has advanced significantly and played a major role in lung 

disease management. A systematic review of 30 studies found 

that A.I. has matched and even outperformed expert 

radiologists in early detection, predicting disease progression, 

recognising disease patterns, and quantifying lung disease. A.I 

makes prognosis and therapy tracking less invasive by 

providing objective measures, while saving time that can be 

spent considering the prognosis and therapy response. 

Fibrogenesis A.I. enhanced, and computational models, 

preclinical micro-CT automated analysis and lung ultrasounds 

also show promise.  

Having an accurate lung disease A.I. prediction system with 

quantification capabilities moves this field towards 

personalized, proactive treatment. That being said, there is a 

longer road ahead. From a clinical perspective, larger, more 

diverse samples, along with multi-centre collaborations, need to 

be obtained. From the review, it is evident that, among the 

reviewed technologies, integrated imaging has made the 

greatest progress to date. This technology will enable fibrosis 

and lung disease management to operate around early 

interventions that human disease management has never 

experienced.  
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