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Abstract—Lung fibrosis is a chronic and progressive illness
where there is pathologic tissue scarring, which affects lung
architecture and respiratory organ functioning. It is caused by
several factors, including idiopathic pulmonary fibrosis (IPF),
radiation-related injury, tumour-related fibrosis, and post-
COVID-19 complications, and all of them are associated with
similar pathophysiology. This review investigates and summarises
studies published from 2015 to 2025 on biological processes,
clinical symptoms, and technological innovations in the diagnosis
and monitoring of lung fibrosis. It emphasises the way that
artificial intelligence (AI) and deep learning (DL) models, such as
quantitative computed tomography (CT) and convolutional neural
networks (CNNs), have enhanced the process of early detection,
disease classification, and medical progression forecasting. The
computational models, such as the agent-based and Monte Carlo
simulations, which are used to study fibrotic dynamics, are also
discussed in the review. In general, the combination of molecular
knowledge, imaging, and Al-based systems can be considered a
major next step in the creation of personalized diagnoses and
better treatment outcomes in chronic fibrotic lung diseases.

Index Terms— Lung Fibrosis, Idiopathic Pulmonary Fibro- sis,
Artificial Intelligence, Deep Learning, Convolutional Neural
Networks, Quantitative Computed Tomography, Post-COVID-19
Fibrosis.

I. INTRODUCTION

WORLD Lung Day highlights the international significance
of respiratory health, and it aims to create awareness of
the most significant airborne diseases like chronic obstructive
pulmonary disease (COPD), asthma, tuberculosis, lung cancer,
and the impacts of air pollution [1]. Lung fibrosis is a
complicated and time-consuming diagnosis that requires
clinical personnel to process a large number of high-resolution
CT images to identify insidious fibrotic alterations. The non-
uniform nature and large volumes of imaging data render
manual interpretation challenging, and automated, intelligent
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solutions are in demand to precisely determine and measure
fibrosis.

A. Background of Lung Fibrosis

Lung fibrosis is a chronic disease in which the lung tissue
becomes thick and rigid, making breathing difficult
andreducsing oxygen transport. The most severe form,
idiopathic pulmonary fibrosis (IPF), typically occurs in
individuals more than 60 years old, and in most cases,
progressive difficulty in breathing occurs within a few years It
occurs when the lungs are damaged repeatedly, and this may be
occasioned by smoking or work exposures or infections.
Genetics are also a cause of some people being more prone to
lung diseases and less able to heal easily, which is caused by
some inherited traits. Knowing these factors will support the
prevention of the disease in its early stage and facilitate the
development of individual strategies that will slow it down [2].
It occurs when the lungs are damaged repeatedly, and this may
be occasioned by smoking or work exposures or infections.
Genetics are also a cause of some people being more prone to
lung diseases and less able to heal easily, which is caused by
some inherited traits. Knowing these factors will support the
prevention of the disease in its early stage and facilitate the
development of individual strategies that will slow it down [2].

B. Causes and Pathological Variants

There are several etiologies of lung fibrosis, such as id-
iopathic pulmonary fibrosis (IPF), radiation-induced lung fi-
brosis (RILF), tumor-associated fibrosis, and post-COVID-19
fibrosis. Lung fibrosis caused by COVID-19 and radiation-
induced pulmonary fibrosis (RIPF) both damage and scar tissue
in similar ways. In both cases, inflammation hurts the lungs and
sets off strange repair processes that make the lungs stiff and
make it hard to breathe. The biological processes at play, such
as the immune response and cellular stress pathways, seem to
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be closely connected. Studying these common mechanisms
may allow us to find strategies to protect lung tissue, reduce
inflammation, and mitigate damage associated with radiation or
viral infection [3].

C. Advances in Diagnostic Imaging and Al

Technological advances facilitate the detection and evalu-
ation of lung fibrosis. Older imaging techniques like high-
resolution computed tomography (HRCT) will soon be re-
placed and enhanced with tools like CT analysis and artificial
intelligence (AI) models. Deep learning (DL) and convolutional
neural networks (CNNs) have been very successful at detecting
interstitial patterns, quantifying fibrotic areas, and forecasting
disease progression. More recent publications have highlighted
the value of Al and DL applied to CNNs on HRCTs for the
recognition of lung fibrosis. CNN models recognize distinct
patterns such as reticular and honeycomb, thus improving
diagnostic efficiency and decreasing the need for biopsies;
however, the use of small training datasets and segmentation
problems still hinders overall applicability [4]. The conceptual
framework of this research review on lung fibrosis, including
important elements, methods of inquiry, and research design
aspects, is presented in Fig 1.
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Fig. 1. Conceptual Structure of Lung Fibrosis Research Review.

II. METHODOLOGY

This review was conducted according to Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. The purpose was to review and appraise clinical
writings, images, and artificial intelligence studies, which
pertain to the diagnosis and treatment of fibrotic lung dis- ease,
including IPF and ILDs. The review protocol has been planned
in accordance with the PRISMA 2020 standards and follows the
earlier published medical imaging and computational
diagnostics evidence synthesis frameworks.

A. Search Strategy

The literature search was conducted across the PubMed,
Scopus, Web of Science, and IEEE Xplore databases to identify
research on lung fibrosis published between 2015 and 2025.
The selection of these databases was intended to cover both
clinical and technological research positions related to
pulmonary fibrosis. Also, imaging protocols. All the chosen
works were peer- reviewed articles. Reference lists and grey
literature sources (institutional repositories, preprints, and

theses) were manually.

B. Inclusion Criteria

The inclusion criteria were established to identify articles
that presented clinical or technological information on lung
fibrosis. The inclusion criteria included the works having
clinical or pathological data, such as characterization of the
disease, biomarkers, or treatment outcome. The use of Al-
based diagnostic structures, including image segmentation,
classification, or prognosis prediction with the use of CT,
HRCT, or histopathology data, was also incorporated in the
studies. The included studies were those that involved human
subjects and were published no earlier than 2015. Quantitative
or qualitative measures of diagnostic performance, model
performance, and data characteristics had to be reported in
articles to ensure that the evidence reviewed was
methodologically sound and applicable to modern Al-based
research in lung fibrosis.

C. Exclusion Criteria

This implies that only credible and comprehensive re-
searches were used in the review. Animal-based research,
laboratory experiments or theoretical studies were not factored
in because the studies were about the clinical aspects of human
beings. The review also managed to exclude short or informal
publications, such as conference papers, editorials, or opinions,
that do not present the entire research methods or results. The
research that lacked informational content, extremely small
samples (less than 20 individuals), or lacked a report of their
findings in the customary manner was also excluded. Lastly,
only articles in English were included, and any overlaps across
databases were eliminated to maintain accurate data. Table I
outlines the study selection process, as guided by PRISMA
2020.

TABLE1
SUMMARY OF STUDY SELECTION PROCESS BASED ON PRISMA
GUIDELINES
PRISMA Stage Records(n) Notes
Records identified 480 PubMed, Scopus, IEEE, Web
through database of Science
searching
Additional records 25 Manual search & grey
identified through other literature

sources
Total records identified 505

Records after duplicates 420 85 duplicates removed

removed

Records screened 420 -

(title/abstract)

Records excluded 330 Irrelevant, outside scope

Full-text articles 90 -

assessed

Full-text articles 59 Small sample size, ani-

excluded mal/preclinical, simulation-
only, case reports.

Studies included in the 31 Included in review

qualitative synthesis

Studies included in 0 Not performed

quantitative synthesis
(meta-analysis)




III. LITERATURE REVIEW

Batah et al. [5] illustrated how deep learning-based Al
models can be used to analyze the HRCT lung images and
classify and detect fibrotic patterns (such as honeycombing and
ground-glass  opacities) automatically. By employing
Convolutional Neural Networks alongside quantitative features
of CT images, it achieved an 85% accuracy. Among its many
automated features, precise outputs remain one of this
research’s highlights. However, dataset bias and small sample
sizes remain critical weaknesses. Valand et al. [6] investigated
a study at Neuro computing presented an artificial intelligence-
driven deep- learning architecture to the early detection of lung
fibrosis based on the computed tomography (CT) imaging data.
The model used convolutional neural networks (CNNs) and
transfer learning to improve the accuracy of fibrotic pattern
classification. Automation and precision were listed as
strengths, but the lack of balance in the dataset, limited
diversity, and the possibility of overfitting limit its clinical
application. Yang et al. [7] studied developments in
computational lung ultrasonography (LUS) for the diagnosis of
respiratory conditions such as ARDS and COVID-19. For
artefact detection and segmentation, the study contrasted deep
learning (CNN, U-Net) with model-based techniques (e.g.,
Radon transform, ADMM). Real-time, explainable imaging is
one of its strengths; generalisation problems, noise sensitivity,
and a lack of annotated data are its drawbacks. Colombi et al.
[8] explained the use of high-resolution computed tomography
(HRCT) in Al-driven assessment of interstitial lung diseases
(ILDs). For pattern classification, segmentation, and prognosis
prediction, the study emphasises machine learning and deep
learning (CNNs). Human-level accuracy and objective
quantification are among its strong points; dataset
heterogeneity, small sample sizes, and the requirement for
standardized multicenter validation are among its weaknesses.
Zhang et al. [9] studied 50 patients with solitary fibrous tumors
of the chest (33 pleural, 17 pulmonary) were retrospectively
examined to evaluate malignancy indicators, diagnosis, and
treatment. Histopathological validation and CT confirmation
were obtained for every case, and immunohistochemistry
revealed positive results for CD34, Vimentin, Bel-2, STATS6,
and CD99. The results of surgery or radiofrequency ablation
were positive, and the main indicators of malignancy were high
Ki-67, CT necrosis, chest tightness, and advanced age. Limited
therapy comparisons and a small single-center sample were
among the limitations. Marchioni et al. [10] Examine how
mechanical forces and stretching in the lungs can exacerbate
fibrosis. Particularly in IPF, stiff and fragile lungs are more
susceptible to dinjury wleadingto excess tissue accumulation
and inadequate repair. The review explains how these forces
impact lung cells and tissue using research on both humans. Its
ability to relate lung mechanics to treatment concepts is one of
its strong points; its main drawbacks are that it mostly depends
on laboratory research and lacks solid evidence from human
trials. Shepelkova et al. [11] compared TB patients with and
without previous COVID-19 infection. They discovered that
patients with TB after COVID-19 had higher levels of passive
and active inflammatory molecules than those without TB after

COVID-19, altered expression of key inflammatory miRNAs in
blood and lung tissues, and more severe lung inflammation. The
changes were assessed using tissue and blood laboratory tests.
Although the study design was limited to a small, single-centre
study and lacked long-term follow-up, the study interweaving
tissue, molecular, and miRNA data integrated a design that
illustrated enduring inflammation. Kumar et al. [12] discuss the
use of Machine Learning (ML) to identify COVID-19, and
more serious lung diseases like pneumonia and lung cancer
from medical images. They indicated positive correlation
predictive value in previous literature, and summarized the
imaging and datasets (X-ray, CT, MRI, PET) with different ML
techniques (CNN, transfer and ensemble learning) during a
given research period. Reliance on previous research, dataset
bias, and overlooking of rare or atypical diseases, were some of
the limitations. Thoroughness and coverage of the topic, and
emerging recommendations were the key strengths. Dorosti et
al. [13] examined the use of Convolutional Neural Networks
(CNNs) for the computerised detection of Chronic Obstructive
Pulmonary Disease (COPD) from CT scans and the
comparative influence of manual and automated window
settings on processing speed. Using 7,194 images, they found
that manual adjustments provided the greatest improvement in
accuracy (AUC 0.86). This study’s strengths include
improvement in detection, relevance to the clinical
methodology, automation, and method validation. However,
the study is limited due to the single-center data, the scope of
COPD, and the lack of external validation. Larici et al. [14]
discuss the use of imaging techniques to study fibrotic lung
diseases, underscoring the utility of high-resolution CT for
diagnosing, monitoring, and assessing complications of
progressive fibrosis. The authors concatenate imaging guide-
lines, honing in on assisting radiologists in pattern detection and
imaging for best practices in subsequent follow-ups. The review
is especially strong in providing practical and clear suggestions.
On the other hand, lacthe review suffers from a void of
resubmission, a lack of new data, limited quantitative data, and
gaps in the expert opinion. Giordani et al. [15] examined the
fibrous zeolites erionite and offretite along with lung fluid
simulants and atomic force microscopy. They observed that
erionite is corrosive in acidic environments but expands in
neutral and basic conditions, which explains why it is much
more toxic and therefore more strongly associated with
mesothelioma. The primary contribution of the study is
impactful nanoscale, real-time observations and insights into
toxicity, and the primary limitations of the paper are the use of
non-fibrous crystals, a shortexperimentalf duration, and some
unclear particle composition. Shah [16] analyses machine
learning methods for lung cancer detection using CT, MRI, and
X-ray images is analyzed. Data-driven algorithms like DNN,
KNN, and SVM yield strong accuracy scores of 95%, yet biased
datasets, narrow scope images, and processing complexities are
factors on why these approaches still aren’t ideal. The authors
summarize progress of effective models and proposed hybrid
methods for improved prompting. Abidi etal. [17] describe how
oil from Pistacia lentiscus defends rats against the pulmonary
toxicity and oxidative stress caused by bleomycin. In those



researchers’ next work, they describe how fibrous mordenite
from Northern Italy contains very fine, respirable and possibly
health damaging fibers. These studies describe the natural
protective resources and the minerals which are hazardous.
Baratella, et al. [18] describe the use of high-resolution CT
scans for evaluating the progression of pulmonary fibrosis in
interstitial lung diseases. The researchers describe visual
scoring and suggest more collaborative, multidisciplinary
approaches in the technical protocols for identifying candidates
for antifibrotic therapy. The strengths are practical and clear
guidance but rely on expert opinion without original data and
potential variability of observers are shortcomings. Li et al. [19]
studied fibrous interstitial lung abnormalities (ILA) and used
quantitative CT to predict lung function decline. They found
that airway measurements such as wall thickness and luminal
area, in conjunction with age and gender, can predict reduced
pulmonary function with an AUC of 0.84. They identified non-
invasive CT biomarkers for early detection of reduced
pulmonary function, though the study was limited by single-
centre data, a small sample size, and a lack of long-term follow-
up. Buccardi et al. [20] demonstrated an automated method
using micro-CT and deep learning was developed to track lung
fibrosis in mice. It outperforms manual analysis by a factor of
45, correlates with tissue analysis, and evaluates disease
progression and reversal on Nintedanib. Time -efficiency,
precision, fewer animals needed, and longitudinal studies are
major strengths. Limitations are small sample size, sole focus
on bleomycin damage, and untested applicability to other
models, or to people. Harr et al. [21] focused on the PEG-FUD
fibronectin-targeting probe for early detection of lung fibrosis
in mice. Damaged lungs showed increased uptake
demonstrating the probe’s correlation with disease severity.
This implies the probe may be capable of non-invasive
detection in the early stages of the disease. In terms of accuracy,
the potential for clinical use in the future, and the non-invasive
nature of the probe highlight its strengths, while the limitations
include focusing on only mice, the short-term nature of the
assessment, and small sample size. Chen and Slater.[22]
analyzed solitary fibrous tumors of the liver (SFTL) which state
most are benign; however, about 18% can be malignant. They
describe a case of a 61-year-old man with malignant SFTL with
recurrence and metastasis six years after surgery. Strengths
include a comprehensive review and detailed insights into the
case; weaknesses include the rarity of the tumour, reliance on
retrospective accounts, and vague imaging results. Cao et al.
[23] utilized computer modelling to forecast potential lung
damage caused by metal nanoparticles. They identified particle
and cellular haracteristicls that best indicate damage and
confirmed this in cellular and murine studies. Identifying
critical safety indicators and adopting a trustworthy paradigm
stand out as strengths, while the drawbacks include focusing on
a single class of nanoparticles, limited cell-type testing, and the
need for additional human validation. Wu et al. [24] reported a
rare case of a 25-year-old male with a malignant solitary fibrous
tumour in the brain that recurred aggressively and metastasised
to the lungs and bones. The researcher described diagnosis via
imaging and tissue sample analysis. Detailed tumour analysis

and improved awareness of aggressive behaviour are strengths
of this study. Limitations include a lack of generalizability due
to the single case and a brief follow-up. Ajouz et al. [25]
reviewed solitary fibrous tumours of the pleura and noted that
any kind of surgical removal, whether open, VATS, or robotic,
must be complete to eliminate recurrence risk. The reviewers
have pointed out a real lack of source material when it comes to
case studies, especially with a focus on long-term implications.
They also noted a lack of original source materialforo practical
recommendations on surgical guidance and minimally invasive
techniques. However, a significant body of literature is
available on the NAB2-STAT6 gene marker and imaging
studies. They also recognized the utility of case studies,
especially with a focus on implementing surgical
recommendations. Ichiki et al. [26] document a rare case
involving a lung solitary fibrous tumoru in a 68-year-old
woman, which was successfully removed via minimally
invasive VATS. The study also discusses tumor characteristics
and the surgical approach taken. The case report’s strengths are
the thoroughness of the pathology and surgical descriptions
while its limitations pertain to the single case nature of the study
and the short follow-up period with which the findings may be
generalized. Sturgil et al. [27] analysed data from 94
pneumonia-related ARDS cases, focusing on COVID-19 versus
non-COVID cases. CT scans of COVID-19 survivors showed
greater lung scarring, but the COVID-19-positive patients and
the non-COVID patients exhibited similar physical functioning.
Overall, both groups exhibited comparable outstanding mental
health issues. A direct comparison of COVID versus non-
COVID cases, and the attention to post-ICU recovery
difficulties, are substantial. However, the study is limited by the
small number of patients, a single centre approach, and a
retrospective design. Hasan [28] generated two humanised
mouse models to investigate lung fibrosis and test drugs, such
as Nintedanib. The HSC model was stable, safe, and better
approximated human immune responses. Strong points include
testing human-specific therapies and achieving consistent
results, while drawbacks include potential side effects from the
PBMC model, a focus on a single drug, a small sample size, and
the need for human validation. Nowak et al. [29]. The two
computer tools were tested in this study, which quantified the
extent of lung scarring in CT scans of 45 patients with
idiopathic pulmonary fibrosis (IPF). One of them will examine
the nature of the scar (ground-glass, small lines, honeycomb-
like sites), and the other will merely categorise the lung tissue
as normal or abnormal. The simple tool was twice as quick; both
tools provided nearly identical results, and their 3-year survival
predictions were also similar. This demonstrates that, despite
being fast and easy, there are other approaches that doctors can
rely on. Nonetheless, the sample was small, applied the data of
one hospital, and it has to be tested on a larger group of patients.
Cogno et al. [30-36] researchers demonstrated created a new
computer model to study lung scarring caused by radiotherapy
for cancer. By combining two advanced simulation methods,
the model tracks cell damage over time and compares different
radiation plans. It shows that splitting radiation doses and using
even proton doses reduces lung damage compared to traditional



photon methods, offering a better prediction tool than older
models. However, it simulates only a small lung section and

relies on computer-based assumptions rather than real patient

data, so further testing is needed to confirm its use in humans.
The summary of key studies is shown in Table II.

TABLE II
SUMMARY OF KEY STUDIES ON LUNG FIBROSIS (2015-2025)
Author(s) ggz;:rtlnée Objective Method / Approach Key Findings Limitations
Batah et al. Respiratory Identify fibrotic Convolutional Neural 85% accuracy Dataset bias, small
[5] Medicine patterns in HRCT lung Networks (CNNs) with in detecting honeycombing  sample size.
images using Al quantitative CT features. and ground-glass
opacities.
Valand et al. Neurocomputi Early detection of CNN with transfer Improved accuracy in Imbalan_ced ) da'_taset,
[6] ng lung fibrosis from CT learning. fibrotic pattern  overfitting risk, limited
using deep learning. classification. clinical validation.
Yang et al. IEEE Clomputat(iional lufl_lg Deep learning (C(I;Ill\l,b . Reall-timg,l Ge_neralizatj:;n_t | is]s(ues,f
; ultrasoun or _ . model- xplain imaging; noise sensitivity, lack o
(7] g;ansamons ARDS/COVID-19 Injleﬁle&&vs O e B hotated data. Y
. diagnosis. .
Ultrasonics, segmentation.
Ferroelectrics,
and Frequency
Control
Colombi et al. Diagnostics Al-driven HRCT Machine learning and Human-level Dataset heterogeneity, small
[8] Assessment of deep learning (CNNs). accuracy in pattern  samples; needs multicenter
Interstitial lung diseases classification and  validation.

Zhang et al.
9

Marchioni et al.

[10]

Shepelkova et al.

[11]

Kumar et al.
[12]

Dorosti et al.
[13]

Larici et al. [14]

Buccardi etal
[20]

Nowak et al.
[29]

Cogno et al.
[30]

Frontiers  in
Oncology

1IIMS

IMS

BMC Medical
Imaging

Computers in
Biology

and Medicine
European
Radiology

Respiratory
Research

Scientific
Reports

Communicatio
ns

Medicine

(ILDs).
Evaluate malignancy
indicators  in solitary

fibrous tumors of the chest.

Study mechanical
forces in lung fibrosis
exacerbation.

Compare TB patients
with/without

prior COVID-19 infection.

Review ML methods for
lung dis- ease detection
from medical images.

Optimize CNN for
COPD  detection
CT.

Imaging guidelines
for fibrotic lung diseases.

from

Automated micro-
CT deep learning for
fibrosis tracking in mice.

Compare two Al
tools for IPF
quantification.

scarring

Develop a mechanistic
model of radiotherapy-
induced lung fibrosis.

Histopathology
and CT imaging
validation.

Review of human and
laboratory studies.

Tissue and  blood
miRNA analysis.

Systematic review of
CNN, transfer learning,
and ensemble methods.

Manual vs. automated
window setting
comparison.

Narrative review with
expert opinion.

Micro-CT + deep
learning Vs.
analysis.

manual

Texture analysis vs.
binary classification.

Agent-based + Monte
Carlo simulation.

prognosis prediction.

High Ki-67, CT
necrosis, chest  tightness,
advanced age as
malignancy markers.

Links lung mechanics to
fibrosis progression;
suggests therapeutic
targets.

Post-COVID TB
patients show more severe
inflammation and altered
miRNA expression.
Summarizes imaging

datasets and ML
techniques; highlights
emerging
recommendations.

Manual adjustment
improvedaccuracy (AUC
0.86).

Practical imaging
recommendations for

diagnosis and monitoring
45x  faster than

manual, correlates with
tissue analysis,  tracks
disease
progression/reversal.

Both tools showed
similar 3-year  survival
prediction; simple tool was
faster.

Shows proton  therapy
and dose splitting reduce
lung damage; better than
older models.

Single-center,

small sample,
limited therapy
comparison.
Relies on lab
lacks human
evidence.

studies,
trial

Single-center,

small sample, no long-
term follow- up.

Dataset bias, over-

looks rare diseases,

reliance on prior studies.

Single centre data,

limited to COPD, no
external validation.

Lacks new data,
quantitative evidence, and
expertconsensus gaps
Small sample,

bleomycin model only, not
tested on humans.

Small single-center

dataset, needs larger
validation.

Simulates small

lung section, uses

assumptions, needs human
validation.

A. Domain-Based Analysis For Ai And Imaging Techniques
in Lung Fibrosis

This research discusses various Al-driven diagnostic and
imaging techniques applicable to different clinical and
pathological domains of lung fibrosis. These domains employ
distinct artificial intelligence methodologies and advanced
imaging techniques tailored to their specific features and

into distinct classifications. The categorizstion of these domains
according to their attributes, causative factors, imaging

patterns, and utilizsd methodologies is encapsulated in the table

below,

clinical needs. A concise analysis categorizes these domains

Summarizstion

emphasising the most pertinent and commonly
employed Al and quantitative imaging techniques for each
domain. Classification of Lung Fibrosis Domains with
Associated  Al-Driven
highlighted in Table III.

Techniques s



TABLE III
CLASSIFICATION OF LUNG FIBROSIS DOMAINS WITH ASSOCIATED AI-DRIVEN SUMMARIZATION TECHNIQUES

Domain / Disease Type

Useful/Desired Al & Imaging Approaches

Worked in Literature (References)

Idiopathic Pulmonary CNN-based HRCT classification,

Idiopathic Pulmonary

Post-COVID-19 Lung Fibrosis

Quantitative CT, Deep
segmentation, Progression prediction, Visual scoring

CNN for ARDS/fibrotic pattern detection, Ground-glass & honeycombing

learning  [4-6], [8],[10],[14],[18-21],[27],[28],[29]

[5L.071,[11],[12],[27],[30]

analysis, Quantitative CT, Prognostic modeling

[31.8],[18,[30]

[81.[14],[18],[191,[20],[21],[27],[29]

Radiation-Induced Lung Quantitative CT, Mechanistic modeling (Agent-based + Monte Carlo), CNN-
Fibrosis (RILF) based fibrosis quantification, Proton vs Photon comparison
Interstitial ~ Lung  Diseases  Al-driven HRCT evaluation, CNN segmentation & classification, Visual

(ILDs)

Progressive Pulmonary Fibrosis
models, Therapy response assessment

Preclinical / Animal Models

HRCT visual scoring, Quantitative CT biomarkers, Deep learning prognosis

Automated micro-CT + Deep learning, Bleomycin mouse model analysis,

scoring protocols, Multidisciplinary antifibrotic guidance

[14],[18],[191,[201,[21],[27],[29]

[20],[21],[28]

Longitudinal tracking, Therapy response (Nintedanib)

General Lung Fibrosis &
Fibrotic ILA

General Lung Fibrosis & Fibrotic ILA

[41,051,[61,[7),[81,[91,[12],[13],[16],[19],
[23],[27],[29],[30]

IV. LUNG SCARRING: THEMATIC REVIEW FACTORS,
IMAGING, AND AI-BASED ASSESSMENT

A. Causes / Risk Factors

The damage to the lungs occurs as a result of harmful
particles constantly penetrating the airways and being
improperly removed by the body. Lung tissue becomes stiffer
and less pliable due to factors such as cigarette smoke, a
polluted environment, factory dust, and exposure to chemicals,
which are slowly causing it to become harder and less flexible.
There are also some infections that have long-term effects,
making the lungs less healthy. The aging process also impairs
the repair mechanism of the body, and scar-like tissues are
produced instead of healthy replacement cells. All in all, poor
defence mechanisms and exposure to the environment
accelerate the progression of this condition.

B. Imaging Technique

Today, detailed body scans are the most widespread method
for detecting stiff and damaged lung areas. These scans reveal
distinctive patterns that help specialists gauge the extent of the
condition's progression. Other equipment, such as ultrasound,
might be useful in emergency cases, and simple X-rays can only
provide general details. Nevertheless, the experience of an
imaging expert usually determines the final assessment, leading
to differences in accuracy. This highlights the increasing
demand for more standardised technology-based systems.
Figure 2 shows the most prominent imaging approaches that
will be used to study lung fibrosis during 2015-2025.

* Al Models & Performance: The Al technologies assist in
decreasing the human error in decoding body images. Deep
learning models can notice the smallest abnormalities, which
could have been overlooked in case a manual check is
conducted. The level of scarring is also determined in these
systems through analysis of texture and lung alterations,
providing a more precise assessment of damage. Other

researchers indicate that Al is capable of alleviating invasive
tests by giving credible early warnings. As times move on, Al
is becoming better at monitoring and assisting in the formation
of better treatment plans.

HRCT 40
CT-Scan 25
Ultra-sound 15
X-Rays 10
MRI 3

0 10 20 30 40

B Image Techniques

Fig. 2. Imaging techniques used in lung fibrosis research
(2015-2025)

» Treatment Advances: The use of modern technology is
enhancing the process of making decisions in treatment. Digital
scoring and Al-based monitoring will facilitate estimating
whether a patient's condition is increasing or decreasing
gradually. The priority in the future is direct care, where an
individual is given a treatment regimen tailored to their specific
lung damage pattern. Because of the advancements in artificial
intelligence, the ability to provide better and more innovative
options for treatment and recovery will increase significantly.
Table IV summarises the key applications of Al in the study of
pulmonary fibrosis.



TABLE IV

AT BASED APPLICATIONS IN PULMONARY FIBROSIS

Applications

Pros

Cons

Key Results

Al-based diagnosis of pulmonary fibrosis on CT.

Al analysis of COVID-19 ARDS lung images

Genetic & epigenetic data integration for fibrosis
prediction.
Computational  lung
ARDS/COVID-19.
Al-driven HRCT evaluation of interstitial lung
disease

ultrasonography  for

Improves accuracy; reduces need
for biopsy.

High accuracy (85%); precise
outputs.

Early detection support.

Real-time detection; explainable;
non-invasive.

Human-level accuracy; prognosis
support.

Small
limits.

dataset; segmentation

Small sample; biased.

Dataset diversity issues; over-
fitting risk.
Generalisation
labels.

Small dataset; heterogeneity.

issues; limited

Enhanced detection of fibrosis
patterns.

Successfully identifies fibrotic
patterns.

Epigenetic changes improve
predictive modelling.

Effective  segmentation  of
abnormalities.

Accurate  quantification  of

fibrotic regions.

Al-based diagnosis of pulmonary fibrosis on CT.
for biopsy.

Improves accuracy; reduces need

Small
limits.

Enhanced detection of fibrosis
patterns.

dataset; segmentation

V. RELATED WORK

The table 5 clearly illustrates the key features of several
studies spanning a variety of Al-assisted diagnostic domains. In
contrast to previous studies that primarily examine single
domain approaches, this review expands to include more
advanced components such as the integration of HRCT-AI,
quantitative analysis of CT data, and mechanistic modeling,
along with micro-CT deep learning, genomics, explainable Al,

and therapy-response prediction. The comparison illustrates the
fully integrated, cross-domain breadth of this review that
clearly distinguishes it from the other, disorganized approaches.
The list comparison factor is described as below: F1: Multi-
Domain Coverage, F2: Al + HRCT Integration, F3:
Quantitative CT F4: Mechanistic Modelling (ABM/Monte-
Carlo) F5: Post-COVID Fibrosis F6: Preclinical Micro-CT +
DL F7: Genomic/Epigenetic Integration F8: Explainable AI F9:
Therapy Response Prediction F10: Combined Classification
Table V.

TABLE V
Al BASED APPLICATIONS IN PULMONARY FIBROSIS

Authors F1 F2 F3 F4

F5 F6 F7 F8 Fo F10

Christe [4]
Batah [5]

Valand [6]
Yang [7]

Colombi [8]
Dorosti [13]
Shah [16]
Baratella [18]
Li [19]

Buccardi [20]
Harr [21]

N XX X X X X X XX XX
Cxx X A A A A XA LKA
X XX K X X X K XX XL
X XX X X X X X XX XX

Sturgil [27]

LN XX X X X X X X X
X AN X X X X X XX XX
X XX X X X X X XK XX
X XX X X X X X X XX
X XN X SN X X X XX XX
XXX X X X X X XX XX

VI. FUTURE DIRECTIONS

Al-assisted imaging captures more intricate details than
standard imaging techniques, making it easier to identify
slungscarring. This technology lessens the need for human
oversight, and the ability to quickly identify small changes in
lung tissue could improve treatment options. The studies,
however, are limited in scope. This is caused by small sample
sizes, unregulated imaging techniques, and the black-box nature
of the Al in use. Currently, the best Al systems work in

conjunction with human specialists, and even in the future, the
gold standard of medical imaging will be human evaluation. For
future studies to be more valuable and used more widely in
clinical practice, one hopes for the use of large, multicenter
datasets, greater data transparency, and Al explainability for
clinical integration. Figure 3 compares the precision of Al-
based solutions and traditional manual techniques.



Comparison Metric
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Fig. 3. Comparison Chart: Al vs. Manual Accuracy

Table V clearly illustrates the key features that several future
investigations should concentrate on building large, diverse
image datasets to boost the generalisation of Al models across
different demographics and imaging devices. Fully addressing
explainable Al is needed to improve acceptance of automated
predictions in decision support. There is an opportunity for
integrated imaging to personalise risk predictions and achieve
earlier interventions by adding genetic and biomarker data.
Furthermore, CT and ultrasound real-time monitoring systems
need to be enhanced to safely and accurately manage the
progressive stages of disease with minimal radiation. To
confidently move these technologies from the research phase to
everyday, practised solutions, close partnerships among
engineers, radiologists, and clinical decision-makers will be
essential. Stiffened, deteriorating lungs, improvements in data,
transparency, and clinical testing must be made. The key
potential research directions in the diagnosis and analysis

methods of lung fibrosis are outlined in Fig 4.
[ Future Research Road Map ]
Integration of Explainable AT Early Fibrosis Real Time Monitoring
multiple model Model Detection Pipe line System

Fig. 4: Future research directions in lung fibrosis detection and analysis

VII. CONCLUSION

Lung fibrosis is a complicated type of lung disease that is
very deadly, with almost no treatment options available. Things
like radiation, pulmonary fibrosis, and even COVID-19 can all
cause lung fibrosis. From 2015 to 2025, artificial intelligence
has advanced significantly and played a major role in lung
disease management. A systematic review of 30 studies found
that A.I. has matched and even outperformed expert
radiologists in early detection, predicting disease progression,
recognising disease patterns, and quantifying lung disease. A.I
makes prognosis and therapy tracking less invasive by
providing objective measures, while saving time that can be
spent considering the prognosis and therapy response.
Fibrogenesis A.l. enhanced, and computational models,
preclinical micro-CT automated analysis and lung ultrasounds
also show promise.

Having an accurate lung disease A.IL. prediction system with

quantification capabilities moves this field towards
personalized, proactive treatment. That being said, there is a
longer road ahead. From a clinical perspective, larger, more
diverse samples, along with multi-centre collaborations, need to
be obtained. From the review, it is evident that, among the
reviewed technologies, integrated imaging has made the
greatest progress to date. This technology will enable fibrosis
and lung disease management to operate around early
interventions that human disease management has never
experienced.
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