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Abstract— Deoxyribose Nucleic Acid (DNA) viruses are a 
major focus in virology because they cause many different 
types of human illness. DNA viruses' biology, 
transmission, and pathogenicity can be better 
comprehended if they are first properly categorized. 
Recently, machine learning has proven to be an effective 
method for studying massive amounts of biological data, 
such as DNA viral sequences. Here, we give a high-level 
overview of utilizing machine learning to categorize DNA 
viral sequences. We address supervised, unsupervised, 
and deep learning strategies that have been used for DNA 
viral sequence classification. The data's high 
dimensionality, highly variable sections, and the 
requirement to differentiate between closely related viral 
strains are only a few of the difficulties we emphasize in 
DNA virus sequence classification. The FASTA Tool was 
used to retrieve the dataset from the NCBI database. The 
data collected included three human gene family 
sequences and six virus sequences. We employed six 
machine learning methods to classify the DNA viruses 
(Sars-Cov-1, Mers-Cov-2, Ebola, Dengue, Influenza, 
Synthase, Ion Channel, and Transcription Factor) with 
98% accuracy. 
 

Keywords— Deoxyribose Nucleic Acid (DNA), Machine 
Learning, NCBI Library, FASTA. 

I. INTRODUCTION  
The acronym DNA refers to deoxyribonucleic acid. It's a 

molecule that all creatures, from bacteria to plants, animals, 
and humans, use to grow and function. The nucleotides that 
makeup DNA coil around each other in a lengthy, double-
stranded molecule. Sugar (deoxyribose), phosphate, and a 
nitrogenous base comprise each nucleotide (adenine, guanine, 
cytosine, or thymine)[1]. The genetic information that is 
transferred from one generation to the next is determined by 
the order in which these nitrogenous bases couple up to create 
the rungs of the DNA ladder. 

In humans, there are two main types of DNA: nuclear 
DNA and mitochondrial DNA. Nuclear DNA: This is the 
most well-known type of DNA in humans. It is located in the 
cell's nucleus and contains most of an individual's genetic 

material. Nuclear DNA is inherited from both parents and 
contains approximately 3 billion base pairs that code for 
about 20,000 to 25,000 genes[2]. 
Mitochondrial DNA: This type of DNA is located in the 
mitochondria of the cell, which are the organelles responsible 
for producing energy. Unlike nuclear DNA, mitochondrial 
DNA is inherited only from the mother, as the sperm 
contributes very little, if any, mitochondria to the fertilized 
egg. Mitochondrial DNA contains only about 16,500 base 
pairs and codes for only a few dozen genes[3]. Because 
mitochondrial DNA is passed down exclusively from the 
mother, it can be used to trace maternal ancestry and 
relationships. 
Viruses that use DNA as their own genetic material are called 
DNA viruses. DNA viruses are extremely versatile pathogens 
that can infect various living things[4]. They are categorized 
according to whether or not they have a double- or single-
stranded DNA genome. Herpesviruses, papillomaviruses, 
adenoviruses, and poxviruses are all examples of DNA 
viruses that can infect humans. These viruses can cause 
various diseases, including cold sores, genital herpes, warts, 
respiratory infections, and smallpox[5]. 
Once a DNA virus infects a host cell, it uses its genetic 
material to hijack its machinery and produce more viral 
particles. Once inside a cell, the virus can replicate and infect 
other cells, further weakening the host. Certain DNA viruses 
can integrate their genetic material into the host's DNA, 
leading to the development of certain types of cancer. 
DNA viruses are a group of viruses that have a DNA genome. 
They make copies of their genetic material (DNA) and new 
virus particles (virions) within the host cell. There are many 
different types of DNA viruses that can infect humans, 
animals, and plants. 
Some examples of DNA viruses that infect humans 
include: 

a) Herpesviruses: This family of viruses includes 
herpes simplex virus (HSV), varicella-zoster virus 
(VZV), and Epstein-Barr virus (EBV). Diseases like 
cold sores, chickenpox, shingles, and infectious 
mononucleosis can all be caused by these viruses. 
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b) Papillomaviruses: These viruses can cause warts 
and are associated with some types of cancer, 
including cervical cancer. 

c) Adenoviruses: These viruses can cause respiratory 
illness, conjunctivitis, and other infections. 

d) Poxviruses: These viruses include variola virus, 
which causes smallpox, and vaccinia virus, which is 
used as a vaccine against smallpox. 

e) The hepatitis B virus (HBV) is a member of the 
hepadnaviral family and is a known cause of liver 
disease and cancer. 

A. Objectives 
Build an Artificial Intelligence Model to predict the Virus 

disease from the DNA/RNA Nucleotide Sequences.  

B. Motivation 
DNA sequences, the complex and clustered data cannot 

openly tell us what the sequence is, what is in the sequence, 
and what the nucleotide associations are. From the Big Data, 
Humans cannot find which sequence is and what it is 
associated with a specific disease or specific virus.  

• AI model Collected Sequences read and predict the 
disease in the DNA/RNA Sequences. 

• Automate the Screening processes to classify the DNA 
diseases. 

C. Problem Statement 
• DNA / RNA Sequences are very difficult for humans 

to read and understand in order to diagnose diseases. 

• We cannot manually classify the multiple sequences at 
a time. 

• Nucleotides can be read but cannot be classified at the 
reading stage for assessment of the Category of the 
disease in the Sequences. 

• Required experience and knowledge of reading 
sequence and classification. 

D. Statement Objectives 
The proposed study aims to develop an artificial 

intelligence model for DNA virus sequence classification. The 
main object of the proposed study is the collection and 
preparation of the required dataset and settlement of the data 
as machine learning algorithms require. After collecting and 
preparing, we trained and tested the algorithm and achieved 
good results. After the results, the model classification 
accuracy should be productive and efficient. 

E. Proposed Study Methodology 
• DNA / RNA Sequences are very difficult for humans 

to read and understand to diagnose diseases. 

• We cannot manually classify the multiple sequences at 
a time. 

• Nucleotides can be read but cannot be classified at the 
reading stage for assessment of the Category of the 
disease in the Sequences. 

• Required experience and knowledge of reading 
sequence and classification. 

II. LITERATURE REVIEW 
An enhancer is a small segment of DNA (50-1500 base 

pairs) that stimulates the expression of genes and the 
subsequent synthesis of RNA and proteins. Several human 
diseases, including cancer, disorder, and inflammatory bowel 
disease, have been linked to genetic polymorphism in 
enhancers. Enhancers play a crucial role in genomics; hence, 
the classification of enhancers is an active field of study in 
computational biology[5]. Even if some computational tools 
have been used to try and solve this issue, there is certainly 
room for advancement in how well they perform. To 
categorize enhancers, we use a support vector machine 
technique and feed it word embedding, which includes sub-
word information of its biological words[7].  

We introduce iEnhancer-5Step, a server on the web that 
uses two-layer classifiers to determine the presence and 
potency of enhancers. Over two levels, our independent test 
accuracy is 79% and 63.5%, respectively. Our proposed 
technique outperforms state-of-the-art predictors when tested 
on the same dataset[8]. Moreover, this study lays the 
groundwork for future investigation that can expand our 
understanding of how to effectively employ natural language 
processing methods in the context of biological sequences. 
You can download iEnhancer-5Step for no cost at 
http://biologydeep.com/fastenc[9]. 

It has become common practice to analyze animal diets by 
applying DNA sequencing-based methods to DNA taken from 
environmental materials, including stomach contents and. 
Meta-barcoding and shotgun sequencing are utilized more 
frequently to answer ecological problems based on dietary 
interactions due to their high resolution and prey detection 
capacity[5]. Despite their immense potential, new studies 
have shown how numerous technical (relating to the 
methodology) and biological (relating to the study system) 
aspects can obscure the true signal of taxonomic diversity[10]. 
This article summarizes this research in light of a new method 
for evaluating trophic interactions that rely on high-
throughput sequencing. We discuss how distortion variables 
can be considered in the study's design and how it is critical to 
recognize the limitations and biases inherent to sequencing-
based diet analysis to achieve trustworthy results and draw 
suitable conclusions. We also provide recommendations for 
scaling up DNA sequencing-based dietary assessments and 
methods for reducing the influence of distortion factors. In 
doing so, we hope to assist end-users in designing robust diet 
studies by educating them on the complexities and limitations 
of DNA sequencing-based diet analyses, and we hope to 
inspire researchers to develop and improve the tools that will 
ultimately propel this field to maturity [11]. NCBI library 
helps us improve data collection [12]. 

The necessity for models that can efficiently compress 
DNA sequences without introducing any inaccuracies has 
grown as a direct result of the explosion in genomic data 
creation. Long-term data storage and compression analysis are 
two of the most important uses. A few recent studies suggest 
employing neural networks to achieve DNA sequence 
compression, which is a significant gap in the existing 
literature[11], [12]. However, they are inferior to more 
specialized DNA compression methods like GeCo2. This 
restriction arises because there are no models tailored to DNA 
sequences. Our work uses the strength of neural networks 
alongside targeted DNA models [5]. To achieve this goal, we 
developed GeCo3, a novel genomic sequence compressor that 
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uses neural networks to combine models of numerous contexts 
and substitution-tolerant contexts into a single prediction. 
Findings: Y-chromosome and human mito-genome, two 
collections of archaeal and virus genomes, four complete 
genomes, and two collections of FASTQ data of a human 
virome and ancient DNA are just some of the datasets we use 
to evaluate GeCo3's performance as a reference-free DNA 
compressor[6].  

GeCo3 significantly improves compression ratios (2.4%, 
7.1%, 6.1%, 5.8%, and 6.0%) compared to its predecessor, 
GeCo2. Tests with primate genome datasets achieve 
compression gains of 12.4%, 11.7%, 10.8%, and 10.1% over 
state-of-the-art. While GeCo3 processes data 1.7–3 times 
slower than GeCo2, it maintains consistent RAM usage 
regardless of sequence length. This improvement is achieved 
through a neural network mixing methodology, which can be 
adapted to various data compressors. GeCo3 is available 
under the GPLv3 license at https://github.com/cobilab/geco3. 

III. METHODOLOGY FRAMEWORK 
The methodology section helps us analyze the issues and 

track in detail what the problem is and what factors we will 
face. 

A. Problem Identification 
The problem with the proposed study is that not all DNA 

sequences are usually directly recognized by humans. What 
are the reasons for this? 

• The DNA Sequences are huge in terms of DNA 
nucleotides. The number of characters differs, like 
AGCT, which includes different characters due to its 
associated type.  

• The sequences are the same for DNA, RNA, Genes, 
and even viruses, so the type of the sequences is also 
a challenge. 

• Humans, animals, and other living bodies have 
different genes, so the sequences are difficult to 
understand if it’s from humans or other living bodies. 

• No standard defined and fixed charter is associated 
with the specific virus type. 

• There is no standard character specification of the 
length of the sequences. 

• No specific gap or repetition of the character helps us 
to find or identify the sequence type. 

B. Problem Fragments 
There are three parts to the problem. The first one is how 

to find the data and recognize and verify that the sequence is 
perfect and related to the specific virus. So, we collected the 
data using the NCBI library and the DNA Sequence 
downloader open-source application. The verification of the 
dataset is also used by the DNA Sequence analyzer, which is 
accessible on the online services for the verification of 
sequence and gene family. The second is how to clean the 
dataset, what kind of character is important, what DNA 
nucleotide characters are important, and how to remove the N-
based character from the sequences. The third part is how to 
build or extract features from the sequences because all 
sequences have minor differences prominently. 

C. Machine Learning and DNA Sequences 
Based on the proposed study, we analyze the sequences 

and how to convert them into machine learning 
understandable features. So, we decided to build the K-Mer 
feature and K-Mer values for each sequence one K-Mar 
feature will consist 4 characters, previously we used 6, but it’s 
not suitable, so we moved back to 4 characters because each 
DNA sequences have the core four nucleotides with the 
feature using analysis helps us to use K-Mer values is not more 
than four characters. 

D. DNA Sequence Code 
The DNA or RNA have Nucleotide codes that are AGCT. 

Each A is for adenine, G for Guanine, and C for cytosine, as 
shown in Fig 1 T for thymine. The composition of each DNA 
virus sequence has many characters with specific patterns of 
nucleotides in the specific sequence of the virus. It may consist 
of N values, null characters, and some other characters, so we 
need to clean them and get the pure DNA sequence for the 
specific class. So, the sequences need to be cleaned and 
classified[19].  

 
Fig 1: DNA Nucleotide structure 

. The DNA nucleotide sequence characters have different 
meanings and logic, so we deal with them in a specific way to 
get the required data. Each code has its specific meaning and 
identification, and the best thing is that it changes the nature 
of the DNA Sequence type, and based on the type, the virus 
also has the same psychology. 

E. Methodology Diagram. 
The whole process is defined in the processed model 

diagram. Figure 2 describes the methodology diagram, and 
Fig 3 describes the entire process flow of the proposed 
method. 

 
Fig 2: Process Model Diagram 

https://github.com/cobilab/geco3
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F. Processed Model Diagram 
The processed model diagram delineates the proposed 

study's workflow from initiation to completion. It 
encompasses the following stages: 

1) Data Collection  
The NCBI Library is an open public Biomedical library, 

and it contains many data collections that can be downloaded. 
The NCBI library helps us to download data directly from FTP 
or DNA Sequence Downloader, which is called FASTA Tool. 
FASTA is the file format in which the DNA Sequences are 
stored. This File can be converted into text using the Bio-
Python Library. The FASTA File contains the Sequence ID, 
Type, Content, Gene, etc. 

2)  BLAST TOOL 
BALAST Tool is the tool that can used to download data 

from the NCBI library. The tool is free and open-source for 
use on multiple operating system platforms.  

 
Fig 3: BLAST TOOL 

3) FASTA File. 
The FASTA File contains the data and a combination of 

AGCT patterns representing the specific association with 
DNA viruses or genes. The DNA sequence file of the FASTA 
file looks like this, which is shown in Fig 4.  

 
Fig 4: FASTA File DNA Sequence  

G. EDA for Dataset 
After downloading the dataset, we do EDA on the data that 

takes us to the feature selection. 

1) Reading Dataset: 

 
Fig 5: Dataset view after reading. 

Since the data consists of the DNA Nucleotide AGCT, which 
is called Sequence, the Outcome is the class or category of the 
DNA Sequence. 

2) Classes in the Dataset: 
The type of the DNA virus sequence names are listed 

below, and Fig 6 describe the classes in the count of the 
sequence type.  

1) SARS-COV-1 
2) MERS 
3) SARS-COV-2 
4) EBOLA 
5) DENGUE 
6) INFLUENZA 
7) SYNTHASE 
8) ION CHANNEL 
9) TRANSCRIPTION FACTOR 

H. Data Encoding and its meaning in DNA Nucleotide: 
The dataset is collected from the NCBI website as DNA 

nucleoid sequences. These sequences have some meaning for 
some chargers used in the sequences. Each character belongs 
to some specific Mnemonics. Table 1 describes the encoding 
nucleotide and its meaning and Mnemonics. 

TABLE I.  NUCLEOTIDE CODE MEANING 

Nucleic Acid 
Code 

Meaning Mnemonic 

A A Adenine 
C C Cytosine 
G G Guanine 
T T Thymine 
U U Uracil 
(I) I Inosine (Non-

Standard) 
R A or G (I) puRine 
Y C, T or C Base which are 

ketones 
M A or C Base with aMino 

Group 
S C or G Strong interaction 
W A, T or U Week interaction 
B Not A(i.e. C,G T or U) B comes after A 
D Not G (i.e. A, C , T or U) D comes after C 
H Not G (A, C, T , U) H comes after U 
V Neither T nor U (i.e A, C, 

or G) 
V comes after U 

N A, C, G, T, U  Nucleic acid 
 Gap of indeterminate 

length  
 

 

I. FASTA File Structure 
Here is the representation of the FASTA File. All FASTA 

Files are placed in a single directory.  

ID: ENST000000001234 
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Sequence: 
AGCTAGTCAGTCATGCAACGTCAGTCAGGTTGCAG
GTCAGTT 

The Data is collected in the form, and each file is 
associated with its class or category. Each file data is extracted 
using the Bio-Python Python library and combined with all 
sequences in one Comma-separated values file. The dataset’s 
look is shown in Fig 5.  The FASTA files how it’s collected, 
managed, and extracted from the FASTA File into Comma 
Separated Values Files. Each DNA sequence is read through 
the Bio-Python, a Biomedical DNA Sequences file reading 
library, and the file reads as shown in Fig 4.9.  

 
Fig 7: Reading and collecting FASTA File 

J. Feature Engineering for Dataset 
As we have the dataset in the character as a string and the 

string we need to convert it into a feature for this purpose, we 
encode the character into metrics. We use the three general 
encoding processes. 

a) Ordinal encoding DNA Sequence. 
b) One-Hot encoding DNA Sequence  
c) DNA Sequence is a language called K-MER 

counting. 

With this method, each nitrogen base must be encoded as an 
ordinal value.  

TABLE II.  NUCLEOTIDE CHARACTER AND ORDINAL ENCODING 

DNA 
Sequence 
Character 

DNA 
Sequence 
Encoding 

value 
A 0.25 
G 0.75 
C 1.0 
T 0.5 
N 0 

 
"ATGC" becomes, for instance, [0.25, 0.5, 0.75, 1.0]. Any 
other base, like "N," can represent a 0. So, let's write a 
program that generates NumPy array objects from sequence 
strings and label encoders that use the letters "a," "c," "g," and 
"t" from the DNA alphabet as well as the character "n" for 
anything else. Figure 8 describes the encoding processes we 
use in the proposed study. 

 
Fig 8: Deployment of the encoding on Dataset. 

1) K-MER As a Feature for Dataset 
In bioinformatics, k-mers are substrings of length k 

included within a biological sequence. Because k-mers are 
made up of nucleotides (i.e. A, T, G, and C), they are most 
often employed in the context of computational genomics and 
sequence analysis, where they are used to assemble DNA 
sequences,[1] enhance heterologous gene expression,[2] 
distinguish between species in metagenomic samples,[4] and 
develop attenuated vaccines. [5] For example, the sequence 
AGAT can be broken down into four monomers (A, G, A, and 
T), three 2-mers (AG, GA, AT), two 3-mers (AGA, GAT), 
and one 4-mer. These subsequences are collectively referred 
to as k-mers (AGAT). In a broader sense, given a sequence of 
length LL, there will be L-k+1  L-k+1 k-mers and nknk 
potential k-mers, where nn is the number of possible 
monomers (e.g. four in the case of DNA). Here is an example 
of two and three K-MERS contained in the DNA Sequence. 
The K-means are the feature of the DNA Sequence, and Fig  9 
shows the features extraction processes, which k-mers used 
for the machine learning for model building. 

 
Fig 9: K-MER Feature engineering processes. 

Figure 10 describes the sample view of the deployment of 
feature extraction code in the sample DNA sequence. 

 

!"#A"B!CDEB

!"#A"B!CDEB

!"#A"B!CDEB

!"#A"B!CDEB

FEG+EI-E.C/
FEG+EI-E.FEG

FEG+EI-E.DE0FEG+EI-EN

+FCI2B3C4B5ST84IBT4BE9T:;-TBT8EB:EG+C:E/B
/;T;B<:4=B!"#A"B!CDE.

>?@BAB#ACCCCCCaEcd
#EG+EI-E@B
"eAf"eAf"feAef"feA"f..."Aef"
dgdE

!"#A%CDE%ECFA#GH,C#"H-GKHEC/MNC2E3"E%4ER

!"#A%CSG7"RC#"H-GKHEC/MNC2E3"E%4ER

/89CDE%ECFA#GH,C#"H-GKHEC/MNC2E3"E%4ER

W;G#KCDE%ECFA#GH,C#"H-GKHEC/MNC2E3"E%4ER

/A-AC2E-RCE%48<G%9C=C>EA-"7EC?@-7A4-G8%

!"#A""#!A#"#A!"#AAA!!#"A""##A!"#A

!"#A""#!A#"#A!"#AAA!!#"A""##A!"#A

!"#A""#!A#"#A!"#AAA!!#"A""##A!"#A

!"#A""#!A#"#A!"#AAA!!#"A""##A!"#A

ABC?a2

2
E3
"E
%4
EC
AR
CA
CHA
%9
"A
9E

ABC?aCARCACE87<

E87<CcCdB#E7CeCfB#E7eCgB#E7eChB#E7iiiiiiiiiiiiMB#E7



 11 

 
Fig 10: Deployment of K-MER 

2) View of the Dataset after feature engineering 
In the Dataset, each sequence is converted into a K-MER 

Feature with Classes in each row. The row contains words of 
each K-MER, so it’s called Word.  

K. Training of the Algorithms 

Training of the Dataset is the 80 percent part of the dataset 
in which the sequences and classes of the sequences. The Test 
data is included without labels which is 20 percent of the 
dataset. First, we use a multinomial dataset. 

 

 
Fig 11: View of the Dataset after applying features. 

1) Multinomial Naïve Bayes 
Multinomial Naive Bayes algorithm is well-suited for this 

type of problem because it can efficiently handle a large 
number of features (i.e., words or terms), and it makes the 
assumption that the features are conditionally independent 
given the class label, which simplifies the computation of the 
likelihood probabilities. 

IV. RESULTS AND DISCUSSION 
The results from various classification algorithms 

highlight the robust performance of the models used in the 
study for DNA virus classification. The Multinomial Naïve 
Bayes model achieved an impressive F1 score of 99%, 
indicating excellent classification accuracy across all classes. 
Similarly, the Support Vector Machine (SVM) exhibited 
comparable performance, as indicated in Fig 13, suggesting 
that both models are effective for this classification task. The 
overfitting analysis of the SVM, utilizing 10-fold cross-

validation, demonstrated that the model was not over-fitted, 
with a training MSE of 0.0 and a test accuracy of 0.07.  

Though typically used for regression tasks, the Random 
Forest Regressor showed promising results with an MSE of 
0.0059 and an R2 value of 0.98, further validating the model's 
capability. The initial overfitting concerns were addressed 
through stratified sampling, significantly enhancing model 
performance to an accuracy of 94%. Finally, the Logistic 
Regression model achieved a classification accuracy of 96%, 
underscoring its effectiveness in multi-class classification 
scenarios. These findings illustrate that appropriate model 
selection and data stratification techniques can markedly 
improve classification performance, thereby ensuring reliable 
and accurate results for DNA virus classification. 

TABLE IV and Fig 13 are the combined results showing 
that the models are outperformed and that the model accuracy 
for each algorithm has reached a 99% correct classification. In 
feature engineering, we use K-mers with 6-character values 
for all algorithms, which can be changed. Since the results are 
already out perform so there is no need to change the strategy 
for feature engineering. In Table 4, all models are shown in 
one place. The analysis shows that all models outperform the 
SVM in more costing algorithms than others, and the fastest 
learner is multinomial. Naïve Bayes gives very fast results. 

 

 
Fig 12: Naïve Bayes Classification Result. 
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Fig 13: Support Vector Machine Results 

TABLE III.  RANDOM FOREST REGRESSOR PERFORMANCE. 
METRICS VALUES 
Mean Absolute Error (MAE): 0.1003 
Mean Squared Error (MSE): 0.1174 
Root Mean Squared Error (RMSE): 0.3427 
Mean Absolute Percentage Error (MAPE): 0.01478 
Explained Variance Score: 0.9835 
Max Error: 3.0000 
Mean Squared Log Error: 0.00204 
Median Absolute Error: 0.0 
R2: 0.9835 
Mean Poisson Deviance: 0.01747 
Mean Gamma Deviance: 0.0031 

 

TABLE IV.  RANDOM FOREST REGRESSOR PERFORMANCE. 
Algorithm  Model ACC 

Multinomial Naïve Bayes 98% 

Support Vector Machine 93% 

Random Forest Regressor 98% 

Random Forest classifier 94% 

Gradient Boosting Regressor 98% 

Linear Regression 96% 

Voting Regression  98% 

Logistic Regression  96% 

 

 
 

Fig 13: All Model Performance 

The models are outperformed, and the results are perfect for 
classification. The dataset is small, but the qualitative features 
help us build the model. The Support vector machine and 
Multinomial Naïve Bayes outperform, but the SVM time 
stamping takes too much time for classification. Gradient 
Boosting regressor is also good, but in the classes of Class 4, 
which are DENGUE and INFLUENZA, some incorrect 
classifications cause a reduction in results. 

CONCLUSION 
The data collection is hectic for the NCBI library's DNA/ 

RNA nucleotide sequences. There are a lot of tools, but it’s 
too slow in Pakistan. The Downloading of the Dataset 
automatically stops, and we try again and again to compile the 
complete file. The preparation of the data is so simple using 
Bio Python that it helps a lot in managing the data. The feature 
engineering also makes it easy to manage and build the data 
language word by word, which is what we call K-MER.  

DNA / RNA sequences can be used for virus prediction, 
and artificial intelligence helps us predict diseases using 
DNA/RNA nucleotide sequences. The proposed method helps 
us use the K-MER feature as a language word, and based on 
language patterns, we build the model for other diseases using 
DNA/ RNA sequences. The proposed study can be deployed 
in the research center and hospital to diagnose the diagnosis.  
The results of the study are so good, and almost all the 
algorithms give us good performance. The Timestamp is 
different for all algorithms, but the SVM take much time for 
classification. The overall results are good.  
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