
International Journal of Emerging Engineering and Technology (IJEET)
ISSN (e): 2958-3764
Volume: 3, Number: 2, Pages: 1 - 5, Year: 2024

 1
This work is licensed under a Creative Commons AttributionShareAlike4.0 International License, which permits
Unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

YOLOv8 vs RetinaNet vs EfficientDet: A
Comparative Analysis for Modern Object Detection

Sana Fatima1, Najmi Ghani Haider2, Rizwan Riaz1
1 Software Engineering Department, NED University of Engineering & Technology, Karachi, 75270, Pakistan
2 Department of Computer Science, UIT University, Karachi, Pakistan
*Corresponding Author: Sana Fatima (Email Address: sanafatima@cloud.neduet.edu.pk)

Received: 08-07-2024 Revised: 10-11-2024 Accepted: 20-11-2024

Abstract— Object detection plays a vital role in computer
vision. It facilitates machines to comprehend and interpret
images and videos and make decisions based on visual
statistics. The search for the finest object detection algorithm
continues to be an important endeavour in the area of
computer vision. For this purpose, this paper includes three
leading models—YOLO (You Only Look Once), RetinaNet,
and EfficientDet, which are thoroughly examined and analyzed
for object detection. We compare these three algorithms using
the COCO dataset, which mainly comprises three categories of
data, which are discussed in this paper. These techniques were
examined using evaluation metrics. It helps to assess which
algorithm is better for object detection. For this study, we used
many AI-based libraries available in Python.

Keywords— Artificial Intelligence, Artificial Neural
Networks, Image Processing, Object Detection

I. INTRODUCTION
Advanced object detection algorithms are taking center stage
in the ever-evolving realm of computer vision. These
algorithms are used to identify objects in an image or video
[1], each striving to find the sweet spot between
computational efficiency and accuracy. This study hones in
on three notable contenders – RetinaNet, EfficientDet, and
YOLO (You Only Look Once) showcasing their state-of-the-
art strategies in tackling the inherent challenges of object
identification tasks. Recognizing the escalating demand for
dependable identification systems, it becomes necessary to
thoroughly understand how these algorithms perform.

The algorithms are tested on a custom dataset that
emphasizes various scenarios and object classes and has
been carefully selected to mimic real-world difficulties. We
seek to analyze the finer points of each algorithm’s
performance measures, highlighting its advantages and
disadvantages through a thorough assessment. In addition to
the numerical analyses, the study examines the trade-offs
that are present in the model’s design decisions, offering a
comprehensive view of the operational dynamics. This
research is very important as it specifically goes beyond
object detection and provides useful information for
scholars and practitioners. The results are intended to enable
decision-makers to select algorithms by matching options to
particular use cases. Additionally, by presenting prospective

directions for advancement and innovation, the research
adds to the continuing conversation on developing computer
vision technologies. This study is essentially an in-depth
examination of the relative subtleties of YOLO, RetinaNet,
and EfficientDet because of their speed and accuracy in
real-time object detection tasks.

II. RELATED WORK

N. Yadav and B. Utkarsh’s research dives into the realm of
object identification algorithms—namely, Single Shot
Detector (SSD), Faster R- CNN, and Region-based Fully
Convolutional Networks (R-FCN) using the COCO
dataset[2]. The research explores how these algorithms
perform in different scenarios, from everyday mobile
applications to critical real-time systems like self-driving cars.
Using TensorFlow for implementation and maintaining
constant hardware conditions, the study focuses on key
parameters such as mean Average Precision (mAP), memory
usage, and testing time. Notably, SSD shines when paired
with lightweight feature extractors on larger images,
showcasing competitive results akin to accuracy-centric
algorithms. The paper underscores the importance of tailoring
model choices to specific applications. In conclusion, it
suggests further exploration through model combination
research to unearth optimal solutions for real-world use. All
in all, this research unravels the intricate dynamics of
performance for leading object detection models in the realm
of computer vision.
R. Padilla et al. discussed the challenges of evaluating
supervised object detection techniques, considering various
metrics and datasets[3]. The research emphasizes the
evolution of real-time object identification applications over
time, highlighting the transformative role of deep neural
networks (DNNs) in computer vision breakthroughs. The
paper highlights the increasing utilization of object
identification methods across industries, showcasing the
revolutionary impact of DNNs in the field. Recognizing the
challenges posed by variations in bounding box
representation formats and metric requirements among tools,
the study stresses the need for standardized benchmark
datasets and evaluation metrics. The paper introduces an
extended evaluation tool with 13 additional indicators and

 2

support for various annotation formats, building upon prior
research. The primary technical contributions include
comprehensively describing widely used measures and
detailing their mathematical foundations and practical
applications. The study delves into video object detection and
introduces a new spatiotemporal metric. Concluding with the
release of an open-source toolbox, the paper offers a
consistent and reliable approach for evaluating object
detection algorithms.
M. Haris and A. Glowacz[4] discussed the automobile
industries, which have developed rapidly since the first
demonstration in the 1980s. S. Kuutti et al. [5] describe the
rapid evolution of the automobile industry since its first
demonstration in the 1980s. It delves into the crucial role that
precise and timely object detection plays in the realm of
automated driving and automotive safety systems. To put
these algorithms to the test, the study taps into the Berkeley
Deep Drive (BDD100K) dataset, evaluating five image
processing heavyweights: R-FCN, Mask R- CNN, SSD,
RetinaNet, and YOLOv4. The study goes a step further,
focusing on various sensors crucial for environmental
perception, including radar, LiDAR, and cameras. By
contrasting their distinct benefits and limitations, the paper
emphasizes the value of leveraging cameras to augment
visual data, particularly in mitigating challenges posed by
dynamic environmental conditions.
Girshick[6] studied different models from the olden days of
R-CNN to Cascade R-CNN. So, R-CNN kicked things off
with regions and classifications, and then SPP-Net jumped
in, bringing spatial pyramid pooling to speed things up
without losing accuracy. Fast R-CNN then joined, mixing
up how it learns where things are and what they are through
RoI pooling. Faster R-CNN changed everything with
Region Proposal Networks (RPN), making it faster to
propose objects. And finally, Cascade R-CNN handled IoU
stuff using several regressors. Basically, these models make
object detection better, fixing speed, alignment, and how
they spot things. Considering the facts and comparisons
given, we decided to compare YOLOv8, RetinaNet and
EfficientDet. For that, this experiment was conducted.

III. MATERIALS AND METHODS

A. YOLOV8 Overview
In traditional object detection methods, images are
processed sequentially, often resulting in slower
performance. On the other hand, YOLO adopts a holistic
image analysis approach. It divides an image into a grid,
independently examining each grid cell for potential objects.
This grid-based strategy allows YOLO to evaluate the entire
image simultaneously, making it efficient and suitable for
real-time applications. The significance of YOLO becomes
particularly evident in scenarios where quick and accurate
object detection is critical, such as autonomous vehicles.
The algorithm’s ability to analyze complex visual data
allows timely decision-making, enhancing its utility in
applications where immediate responses are paramount.
Unlike conventional methods, YOLO’s grid-based
methodology facilitates a comprehensive examination of
each grid cell, enabling it to capture intricate details and

relationships within the image. Moreover, YOLO’s
versatility extends beyond just detecting objects; it can
discern multiple objects within a single grid cell and
categorize them accurately. This capability enhances its
applicability in diverse settings, from surveillance systems
to medical imaging. The algorithm’s speed and accuracy
make it a preferred choice for various computer vision tasks,
underscoring its impact on advancing the capabilities of
object detection technologies. The algorithm operates
through a series of key steps:
a) Grid-based Partitioning: YOLO divides the input image
into a grid, often with grid sizes like 7x7 or 13x13. Each cell
in this grid takes on the responsibility of detecting objects.
b) Bounding Box Predictions: YOLO predicts multiple
bounding boxes within each grid cell. These boxes serve as
hypotheses regarding potential object locations. For each
bounding box, the algorithm predicts essential parameters,
including the coordinates of the box’s center, its width and
height, and a confidence score denoting the model’s
certainty that the box contains an object.
c) Class Prediction: YOLO simultaneously provides
predictions for the probability of the detected object longing
for various classes. This facilitates multi-class object
detection, allowing users to identify and classify different
objects within the image.
d) Confidence thresholding and Non-Maximum
Suppression: YOLO applies a confidence threshold to filter
out less certain detections after making predictions.
Subsequently, it employs Non-Maximum Suppression
(NMS) to refine the results. NMS ensures that only the most
confident and non-overlapping bounding boxes are retained,
eliminating redundancy in predictions.
e) Single Forward Pass: Unlike other object detection
algorithms that perform multiple passes over an image,
YOLO processes the entire image in a single forward pass.
Thus, it enhances speed and makes YOLO particularly
suitable for real-time applications.

B. Retinanet Overview
RetinaNet is a state-of-the-art object detection model that
has gained prominence in the field of computer vision.
Noteworthy for its ability to strike a balance between
accuracy and efficiency. The working of RetinaNet includes
the following steps:
a) Feature Pyramid Network (FPN): RetinaNet employs a
Feature Pyramid Network to extract hierarchical features
from an image [7]. This is crucial for detecting objects of
various sizes, ensuring that fine details and coarse structures
are considered during detection.
b) Anchor Boxes: Similar to other object detection models
like YOLO, RetinaNet utilizes anchor boxes. These anchor
boxes serve as reference points across the image, spanning
different scales and aspect ratios. They act as hypotheses for
potential object locations.
c) Object Classification: For each anchor box, RetinaNet
predicts the likelihood of it containing an object and assigns
a specific class to the object. The classification is performed
through a dedicated sub-network, allowing RetinaNet to
handle multi-class detection tasks.

 3

d) Bounding Box Regression: In parallel with classification,
RetinaNet engages in bounding box regression [8]. The
model refines the initially proposed anchor boxes to better
align with the true boundaries of the detected objects. This
step enhances the precision of object localization.
e) Focal Loss: RetinaNet introduces a novel loss function
called Focal Loss [9]. This addresses the issue of class
imbalance inherent in object detection datasets. Focal Loss
dynamically adjusts the weights assigned to different
examples during training, prioritizing challenging cases over
well-classified ones, which represents quantifiable
advancement in identifying underrepresented classes with
enhanced precision and recall as compared to traditional
approaches.
f) Single Shot Processing: RetinaNet uses a single-shot
processing approach to evaluate the entire image in a single
forward pass. This streamlined method improves the
model’s efficiency, making it adept at real-time object
detection applications.
The integration of FPN, anchor boxes, and the introduction
of Focal Loss collectively contribute to its success in
achieving accurate and efficient object detection results.

C. Efficientdet Overview
EfficientDet is acclaimed for its efficiency in balancing
accuracy and computational resources [10]. The working of
EfficientDet is mentioned in the following steps:
a) Efficient Backbone Architecture: At the core of
EfficientDet is a highly efficient backbone architecture.
Unlike traditional models that often employ resource-
intensive backbones, EfficientDet utilizes compound scaling
to achieve a favourable balance between model size and
accuracy. This enables the model to operate efficiently
across a range of computational resources.
b) BiFPN (Bidirectional Feature Pyramid Network):
EfficientDet employs a Bidirectional Feature Pyramid
Network to capture multi-scale features effectively. [11]
This innovative network design facilitates information
exchange across different scales, enhancing the model’s
ability to detect objects of various sizes within an image.
c) Anchor Box Mechanism: Similar to other object
detection frameworks, EfficientDet leverages anchor boxes
[12]. These anchor boxes, strategically positioned across the
image, serve as reference points for potential object
locations. The model predicts the presence of objects within
each anchor box and refines their positions through
bounding box regression.
d) Object Classification: EfficientDet incorporates a robust
mechanism for object classification. Using a dedicated sub-
network, the model assigns specific class labels to detected
objects. This allows EfficientDet to handle tasks involving
multiple object classes.
e) EfficientDet Loss Function: The model employs a well-
crafted loss function that combines both classification and
regression objectives [13]. This loss function ensures that
the model accurately classifies objects and precisely
localizes them within the image.
f) Compound Scaling: One of the distinctive features of
EfficientDet is its use of compound scaling to optimize
model parameters. This technique scales the model’s depth,

width, and resolution in a balanced manner, resulting in
improved accuracy without excessive computational
demands.
g) Efficient Single Shot Processing: Following the trend of
single-shot object detection models, EfficientDet processes
the entire image in a single pass [14]. This efficient single-
shot processing contributes to the model’s real-time object
detection capabilities.

 VI. MATERIALS AND FRAMEWORK

A. Dataset
We used Roboflow, a flexible data management tool, to
carefully select a portion of the large COCO dataset. We
started with 7,500 photographs in three categories but had
to narrow them down to a training set of 100 images per
category due to practical limitations. [15] Each category is then
evaluated using six test images. The dataset was thoroughly
preprocessed before training, with all photos resized to a
standard 416x416 pixel size and rotation augmentations
applied to increase diversity within the training set. The
enormous diversity of the COCO dataset and Roboflow’s
effective data processing powers were combined to
create a training experience that was both nuanced and
highly optimized.

B. Tools and Techniques
We used a number of essential tools and libraries in our
Google-Colab project, as listed below:
a.TensorFlow We use this open-source machine learning
framework [16] to develop and train our neural network
models for their scalability and adaptability, making it a
popular platform for various machine learning applications.
b.PyTorch: We used PyTorch because of its dynamic
computational graph [17], which is especially useful for
deep learning research and testing. Its simple layout and
effortless operation made integration into our project a
breeze.
Pandas: Pandas is a flexible Python data manipulation
library. It was used to handle and preprocess data
efficiently [18]. We could efficiently organize and handle
our dataset thanks to its Data-Frame format, which also
helped expedite the data preparation process.
c.NumPy: Python numerical calculations can be performed
with the help of the NumPy library. Since NumPy offers a
strong foundation for various mathematical and statistical
operations crucial to machine learning processes [19], we
rely on it for our array-based computations.
d. OpenCV: For image processing jobs, an Open Source
Computer vision library was essential [20]. For tasks like
loading images, resizing them, and performing different
computer vision operations, we used OpenCV. It was an
essential tool for handling and modifying image data due to
its extensive feature set.
Overall, TensorFlow, PyTorch, Pandas, NumPy,
OpenCV, and Google Colab helped us create a strong
ecosystem that made building and training our machine-
learning models easier. Every tool had a unique function
that enhanced the effectiveness and success of our
endeavour.

 4

C. Preprocessing
The dataset was already available in different formats on
Roboflow. The images were resized to 416 x 416, and
rotational augmentations were applied. After image
preprocessing, the dataset directory structure was made to
match the input format of that model.

V. EXPERIMENT

The Ultralytics YOLOv8 represents a leading-edge, state-of-
the-art (SOTA) model that enhances upon the
accomplishments of its predecessors, incorporating novel
features and enhancements to augment overall performance
and adaptability. YOLOv8 is meticulously crafted to be swift,
precise, and user-friendly. It is an outstanding option for
diverse applications such as object detection and tracking,
instance segmentation, image classification and pose
estimation tasks. As compared to YOLOv8’s predecessor,
YOLOv5, YOLOv8 comes with a new anchor-free detection
system, changes to the convolutional blocks used in the
model, and mosaic augmentation applied during training,
turned off before the last 10 epochs. It stores the dataset path
and classes in the YAML file and was trained by modifying
the pre-trained weights provided by Ultralytics. The dataset
was converted to YOLOv8 format by Roboflow Universe.
Fizyr solutions are employed for custom dataset training with
RetinaNet. The RetinaNet model undergoes training using
pre-trained weights from the COCO dataset and a ResNet50
backbone, comprising a total of 12,863,295 trainable
parameters. Each annotation is represented on a single line
using a CSV file to pass data. When images contain multiple
bounding boxes, each box is assigned its own row in the CSV
file. Fizyr’s keras-retinanet training procedure employs
models specifically designed for training purposes, with
streamlined versions compared to the inference model
featuring only the essential layers for regression and
classification values. It is imperative to convert the trained
model into an inference model to conduct inference on a
model, which is necessary for object detection in an image.
In the case of EfficientDet, another EfficientDet Pytorch
repository has been utilized. This is a Pytorch re-
implementation of the official EfficientDet, showcasing state-
of-the-art (SOTA) performance in real-time scenarios. The
model encompasses multiple coefficients, ranging from D0 to
D8, where D8 exhibits the highest mean average precision
(mAP). The model requires input in a dataset format akin to
Microsoft COCO, as the repository specifies. A YAML-
formatted configuration file is included, enabling the manual
configuration of project-specific parameters. During this
model training, the backbones are frozen, and the training
parameters are as follows:
• Epochs: 50
• Patience: 15
• Learning Rate: 0.001
• Batch size: 16
The dataset is partitioned into training and testing sets, and
the model undergoes updates across multiple epochs,
contingent upon the specified tolerance for optimization
(TOL). Convergence is deemed achieved, and training
concludes when there is no significant improvement in the

loss or score by at least TOL for consecutive iterations as
defined.

IV. RESULTS AND DISCUSSION
This investigation involves an assessment of the performance
of three object detection models – YOLOv8, Efficient- Det,
and RetinaNet, employing precision, recall, and mean
Average Precision (mAP) as pivotal metrics. Figure 1
represents the precision of Yolov8, RetinaNe and
EfficiantDet algorithms.

FIGURE 1: precision of Yolov8, RetinaNet and EfficiantDet algorithms

TABLE I
PERFORMANCE OF YOLOV8, RETINANET AND EFFICIANTDET

ALGORITHMS
Metric YOLOv8 RetinaNet EfficientDet

Accuracy 0.71
(highest)

0.67 0.55

Inference
Time

1.0 ms
(fastest)

1.2362 s
(slowest)

1.0 s

mAP 0.71
(highest)

0.67 0.55

Table 1 shows the performance of all three algorithms based
on their accuracy, Inference time and mAp value. As
mentioned in Table 1, YOLOv8 showed the most elevated
accuracy among the models, with a score of 0.71,
demonstrating areas of strength to detect positive occurrences
accurately.
RetinaNet exhibited an estimable accuracy of 0.67,
displaying its precision in accurately identifying positive
cases. EfficientDet had a precision value of 0.55,
respectively, which was slightly lower, but it still performed
well enough to correctly identify true positives.
IYOLOv8 has the highest speed (inference time) of 1.0ms,
mirroring its viability in catching significant positive
occurrences in a single detection.
RetinaNet detects objects in multiple stages, so it has a high
inference time of around 1.2362s.
EfficientDet was followed intimately with an inference
speed of 1s, showing a comparable ability to detect positive
instances. With a mAP score of 0.71, YOLOv8 stands out as
a strong contender for object detection tasks due to its
overall proficiency in precision and recall. RetinaNet
showed a competitive mAP value of 0.67, which is a
reasonable performance. EfficientDet had a respectable
level of accuracy with a mAP of 0.55, but lagged slightly
behind the other models. Figure 2 exhibits the mAP values

 5

of all three algorithms.

FIGURE 2: mAP for Yolov8, RetinaNet and EfficientDet Algorithms.

VII. CONCLUSION
The comparative examination of performance metrics, mAP
assessment, and inference times across the three object
detection models indicates that YOLOv8 achieves the
highest levels of accuracy, recall, and mAP scores,
positioning it as a robust candidate for object detection
tasks. Nevertheless, RetinaNet and EfficientDet also
demonstrate competitive performance, offering potential
advantages in certain use cases or where specific
computational requirements are prioritized. YOLOv8 proves
effective for real-time object detection, particularly for small
objects, excelling in scenarios emphasizing high accuracy
and recall. Conversely, RetinaNet’s utilization of focal loss
enhances its capability to handle class imbalance, and
EfficientDet’s scalability and efficiency make it an
attractive choice for re-source-constrained environments.
These insights provide valuable guidance for researchers
and practitioners in selecting the most appropriate object
detection model tailored to their specific needs and
constraints.

ACKNOWLEDGMENT

The authors would like to express their gratitude to "the
Software Engineering Department of NED University of
Engineering and Technology" for their invaluable support
and resources throughout this research.

FUNDING STATEMENT
The author(s) received no specific funding for this study.

CONFLICTS OF INTEREST
The authors declare they have no conflicts of interest to report
regarding the present study.

REFERENCES
[1] Amin, M.A. and K. Khaled, Copper corrosion inhibition in O2- AI

Pioneer, ”Medium,” 28 June 2023. [Online]. Available:

https://medium.com/@tejasdalvi927/object-detection-with-yolo-and-
opencv-a-practical-guide-cf7773481d11. [Accessed 9 January 2024].

[2] N. Yadav and B. Utkarsh, ”Comparative Study of Object Detection
Algorithms,” International Research Journal of Engineering and
Technology (IRJET) , vol. 4, no. 11, pp. 586-591, 2017.

[3] R. Padilla, R. L. Passos, T. L.B. Dias, S. L. Netto and S. A.B. da
Silva, ”A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit,” Electrical Engineering
Program/Alberto Luiz Coimbra Institute for Post-Graduation and
Research in Engineering, 2021.

[4] M. Haris and A. Glowacz, ”Road Object Detection: A Comparative
Study of Deep Learning-Based Algorithms,” Electronics 2021, 2021.

[5] S. Kuutti, R. Bowden, Y. Jin, P. Barber and S. Fallah, ” A Survey of
Deep Learning Applications to Autonomous Vehicle Control,”
IEEE Trans. Intell. Transp. Syst, p. 712–733, 2020.

[6] R. D. J. D. T. M. J. Girshick, ”Rich feature hierarchies for accurate
object detection and semantic segmentation.,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 38, no. 1, pp.
142-158, 2014.

[7] X. Yang, W. Wang, J. Wu, C. Ding and S. Ma, ”MLA-Net: Feature
Pyramid Network with Multi-Level Local Attention for Object
Detection,” Advanced Machine Learning Methods for Image
Processing, Perception and Understanding, 2022.

[8 S.-h. Tsang, ”Medium,” 14 January 2019. [Online].
Available: https://towardsdatascience.com/review-retinanet-focal-
loss-object- detection-38fba6afabe4. [Accessed 11 January 2024].

[9] A. Kirouane, ”Linkedin,” 4 February 2023. [Online].
Available: https://www.linkedin.com/pulse/retinanet-focal-loss-
object-detection- ayoub-kirouane/. [Accessed 11 January 2024].

[10] M. Tan, R. Pang and Q. V. Le, ”EfficientDet: Scalable and Efficient
Object Detection,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition , 2020.

[11] L. Fu, W.-b. Gu, W. Li, L. Chen, Y.-b. Ai and H.-l. Wang,
”Bidirectional parallel multi-branch convolution feature pyramid
network for target detection in aerial images of swarm UAVs,”
Defence Technology, vol. 17, no. 4, pp. 1531-1541, 2021.

[12] J. Li, ”Medium,” 3 November 2020. [Online].
Available: https://blog.ml6.eu/retraining-efficientdet-for-high-
accuracy-object- detection-961e906cae8. [Accessed 11 January
2024].

[13] M. Tan, R. Pang and Q. V. Le, ”EfficientDet: Scalable and Efficient
Object Detection,” in IEEE, 2020.

[14] R. Kundu, ”V7,” 17 January 2023. [Online].
Available:https://www.v7labs.com/blog/yolo-object-detection.
[Accessed 11 January 2024].

[15] E. Padron, ”Medium,” 30 July 2023. [Online].
Available: https://fulldataalchemist.medium.com/building-your-own-
real-time- Object-detection-app-roboflow-yolov8-and-streamlit-part-
1-f577cf0aa6e5. [Accessed 9 January 2024].

 [16] S. Yegulalp, ”InfoWorld,” 5 January 2024. [Online].
Available: https://www.infoworld.com/article/3278008/what-is-
tensorflow-the- machine-learning-library-explained.html. [Accessed
9 January 2024].

[17] V. K. Solegaonkar, ”towardsdatascience,” 20 September 2019.
[On- line]. Available: https://towardsdatascience.com/introduction-
to-py-torch- 13189fb30cb3. [Accessed 9 January 2024].

[18] C. Team, ”CodeAcademy,” [Online].
Available: https://www.codecademy.com/article/introduction-to-
numpy-and-pandas. [Accessed 9 Januray 2024].

[19] C. Team. [Online]. Available:
https://www.codecademy.com/article/introduction- to-numpy-and-
pandas. [Accessed 9 January 2024].

[20] Boesch, ”viso.ai,” [Online]. Available: https://viso.ai/computer-
vision/opencv/. [Accessed 9 January 2024].Standard Y10.5-1968.

https://fulldataalchemist.medium.com/building-your-own-real-time-
https://fulldataalchemist.medium.com/building-your-own-real-time-

