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Abstract— Object detection plays a vital role in computer 
vision. It facilitates machines to comprehend and interpret 
images and videos and make decisions based on visual 
statistics. The search for the finest object detection algorithm 
continues to be an important endeavour in the area of 
computer vision. For this purpose, this paper includes three 
leading models—YOLO (You Only  Look  Once), RetinaNet,  
and EfficientDet, which are thoroughly examined and analyzed 
for object detection. We compare these three algorithms using 
the COCO dataset, which mainly comprises three categories of 
data, which are discussed in this paper. These techniques were 
examined using evaluation metrics. It helps to assess which 
algorithm is better for object detection.  For this study, we used 
many AI-based libraries available in Python. 
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I. INTRODUCTION  
Advanced object detection algorithms are taking center stage 
in the ever-evolving realm of computer vision. These 
algorithms are used to identify objects in an image or video 
[1], each striving to find the sweet spot between 
computational efficiency and accuracy. This study hones in 
on three notable contenders – RetinaNet, EfficientDet, and 
YOLO (You Only Look Once) showcasing their state-of-the-
art strategies in tackling the inherent challenges of object 
identification tasks. Recognizing the escalating demand for 
dependable identification systems, it becomes necessary to 
thoroughly understand how these algorithms perform. 

 
The algorithms are tested on a custom dataset that 
emphasizes various scenarios and object classes and has 
been carefully selected to mimic real-world difficulties. We 
seek to analyze the finer points of each algorithm’s 
performance measures, highlighting its advantages and 
disadvantages through a thorough assessment. In addition to 
the numerical analyses, the study examines the trade-offs 
that are present in the model’s design decisions, offering a 
comprehensive view of the operational dynamics.  This 
research is very important as it specifically goes beyond 
object detection and provides useful information for 
scholars and practitioners. The results are intended to enable 
decision-makers to select algorithms by matching options to 
particular use cases. Additionally, by presenting prospective 

directions for advancement and innovation, the research 
adds to the continuing conversation on developing computer 
vision technologies. This study is essentially an in-depth 
examination of the relative subtleties of YOLO, RetinaNet, 
and EfficientDet because of their speed and accuracy in 
real-time object detection tasks.  

II.  RELATED WORK 

N. Yadav and B. Utkarsh’s research dives into the realm of 
object identification algorithms—namely, Single Shot 
Detector (SSD), Faster R- CNN, and Region-based Fully 
Convolutional Networks (R-FCN) using the COCO 
dataset[2]. The research explores how these algorithms 
perform in different scenarios, from everyday mobile 
applications to critical real-time systems like self-driving cars. 
Using TensorFlow for implementation and maintaining 
constant hardware conditions, the study focuses on key 
parameters such as mean Average Precision (mAP), memory 
usage, and testing time. Notably, SSD shines when paired 
with lightweight feature extractors on larger images, 
showcasing competitive results akin to accuracy-centric 
algorithms. The paper underscores the importance of tailoring 
model choices to specific applications. In conclusion, it 
suggests further exploration through model combination 
research to unearth optimal solutions for real-world use. All 
in all, this research unravels the intricate dynamics of 
performance for leading object detection models in the realm 
of computer vision. 
R. Padilla et al. discussed the challenges of evaluating 
supervised object detection techniques, considering various 
metrics and datasets[3]. The research emphasizes the 
evolution of real-time object identification applications over 
time, highlighting the transformative role of deep neural 
networks  (DNNs)  in computer vision breakthroughs.  The 
paper highlights the increasing utilization of object 
identification methods across industries, showcasing the 
revolutionary impact of DNNs in the field.  Recognizing the 
challenges posed by variations in bounding box 
representation formats and metric requirements among tools, 
the study stresses the need for standardized benchmark 
datasets and evaluation metrics. The paper introduces an 
extended evaluation tool with 13 additional indicators and 
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support for various annotation formats, building upon prior 
research. The primary technical contributions include 
comprehensively describing widely used measures and 
detailing their mathematical foundations and practical 
applications. The study delves into video object detection and 
introduces a new spatiotemporal metric. Concluding with the 
release of an open-source toolbox, the paper offers a 
consistent and reliable approach for evaluating object 
detection algorithms. 
M. Haris and A. Glowacz[4] discussed the automobile 
industries, which have developed rapidly since the first 
demonstration in the 1980s. S. Kuutti et al. [5] describe the 
rapid evolution of the automobile industry since its first 
demonstration in the 1980s. It delves into the crucial role that 
precise and timely object detection plays in the realm of 
automated driving and automotive safety systems. To put 
these algorithms to the test, the study taps into the Berkeley 
Deep Drive (BDD100K) dataset, evaluating five image 
processing heavyweights: R-FCN, Mask R- CNN, SSD, 
RetinaNet, and YOLOv4. The study goes a step further, 
focusing on various sensors crucial for environmental 
perception, including radar, LiDAR, and cameras. By 
contrasting their distinct benefits and limitations, the paper 
emphasizes the value of leveraging cameras to augment 
visual data, particularly in mitigating challenges posed by 
dynamic environmental conditions.  
Girshick[6] studied different models from the olden days of 
R-CNN to Cascade R-CNN. So, R-CNN kicked things off 
with regions and classifications, and then SPP-Net jumped 
in, bringing spatial pyramid pooling to speed things up 
without losing accuracy. Fast R-CNN then joined, mixing 
up how it learns where things are and what they are through 
RoI pooling. Faster R-CNN changed everything with 
Region Proposal Networks (RPN), making it faster to 
propose objects. And finally, Cascade R-CNN handled IoU 
stuff using several regressors. Basically, these models make 
object detection better, fixing speed, alignment, and how 
they spot things. Considering the facts and comparisons 
given, we decided to compare YOLOv8, RetinaNet and 
EfficientDet. For that, this experiment was conducted. 

III. MATERIALS AND METHODS 

A. YOLOV8 Overview 
In traditional object detection methods, images are 
processed sequentially, often resulting in slower 
performance. On the other hand, YOLO adopts a holistic 
image analysis approach. It divides an image into a grid, 
independently examining each grid cell for potential objects. 
This grid-based strategy allows YOLO to evaluate the entire 
image simultaneously, making it efficient and suitable for 
real-time applications. The significance of YOLO becomes 
particularly evident in scenarios where quick and accurate 
object detection is critical, such as autonomous vehicles. 
The algorithm’s ability to analyze complex visual data 
allows timely decision-making, enhancing its utility in 
applications where immediate responses are paramount. 
Unlike conventional methods, YOLO’s grid-based 
methodology facilitates a comprehensive examination of 
each grid cell, enabling it to capture intricate details and 

relationships within the image. Moreover, YOLO’s 
versatility extends beyond just detecting objects; it can 
discern multiple objects within a single grid cell and 
categorize them accurately. This capability enhances its 
applicability in diverse settings, from surveillance systems 
to medical imaging.  The algorithm’s speed and accuracy 
make it a preferred choice for various computer vision tasks, 
underscoring its impact on advancing the capabilities of 
object detection technologies. The algorithm operates 
through a series of key steps: 
a)  Grid-based Partitioning: YOLO divides the input image 
into a grid, often with grid sizes like 7x7 or 13x13. Each cell 
in this grid takes on the responsibility of detecting objects. 
b)  Bounding Box Predictions: YOLO predicts multiple 
bounding boxes within each grid cell. These boxes serve as 
hypotheses regarding potential object locations. For each 
bounding box, the algorithm predicts essential parameters, 
including the coordinates of the box’s center, its width and 
height, and a confidence score denoting the model’s 
certainty that the box contains an object. 
c)  Class Prediction: YOLO simultaneously provides 
predictions for the probability of the detected object longing 
for various classes. This facilitates multi-class object 
detection, allowing users to identify and classify different 
objects within the image. 
d) Confidence thresholding and Non-Maximum 
Suppression: YOLO applies a confidence threshold to filter 
out less certain detections after making predictions. 
Subsequently, it employs Non-Maximum Suppression 
(NMS) to refine the results. NMS ensures that only the most 
confident and non-overlapping bounding boxes are retained, 
eliminating redundancy in predictions. 
e) Single Forward Pass: Unlike other object detection 
algorithms that perform multiple passes over an image, 
YOLO processes the entire image in a single forward pass.  
Thus, it enhances speed and makes YOLO particularly 
suitable for real-time applications. 

B. Retinanet Overview 
RetinaNet is a state-of-the-art object detection model that 
has gained prominence in the field of computer vision. 
Noteworthy for its ability to strike a balance between 
accuracy and efficiency. The working of RetinaNet includes 
the following steps: 
a)  Feature Pyramid Network (FPN): RetinaNet employs a 
Feature Pyramid Network to extract hierarchical features 
from an image [7]. This is crucial for detecting objects of 
various sizes, ensuring that fine details and coarse structures 
are considered during detection. 
b)  Anchor Boxes: Similar to other object detection models 
like YOLO, RetinaNet utilizes anchor boxes. These anchor 
boxes serve as reference points across the image, spanning 
different scales and aspect ratios. They act as hypotheses for 
potential object locations. 
c)  Object Classification: For each anchor box, RetinaNet 
predicts the likelihood of it containing an object and assigns 
a specific class to the object. The classification is performed 
through a dedicated sub-network, allowing RetinaNet to 
handle multi-class detection tasks.  
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d) Bounding Box Regression: In parallel with classification, 
RetinaNet engages in bounding box regression [8]. The 
model refines the initially proposed anchor boxes to better 
align with the true boundaries of the detected objects. This 
step enhances the precision of object localization. 
e)  Focal Loss: RetinaNet introduces a novel loss function 
called Focal Loss [9]. This addresses the issue of class 
imbalance inherent in object detection datasets. Focal Loss 
dynamically adjusts the weights assigned to different 
examples during training, prioritizing challenging cases over 
well-classified ones, which represents quantifiable 
advancement in identifying underrepresented classes with 
enhanced precision and recall as compared to traditional 
approaches. 
f)  Single Shot Processing: RetinaNet uses a single-shot 
processing approach to evaluate the entire image in a single 
forward pass. This streamlined method improves the 
model’s efficiency, making it adept at real-time object 
detection applications. 
The integration of FPN, anchor boxes, and the introduction 
of Focal Loss collectively contribute to its success in 
achieving accurate and efficient object detection results. 

C. Efficientdet Overview 
EfficientDet is acclaimed for its efficiency in balancing 
accuracy and computational resources [10]. The working of 
EfficientDet is mentioned in the following steps: 
a)  Efficient Backbone Architecture:  At the core of 
EfficientDet is a highly efficient backbone architecture. 
Unlike traditional models that often employ resource-
intensive backbones, EfficientDet utilizes compound scaling 
to achieve a favourable balance between model size and 
accuracy. This enables the model to operate efficiently 
across a range of computational resources. 
b) BiFPN (Bidirectional Feature Pyramid Network): 
EfficientDet employs a Bidirectional Feature Pyramid 
Network to capture multi-scale features effectively. [11] 
This innovative network design facilitates information 
exchange across different scales, enhancing the model’s 
ability to detect objects of various sizes within an image. 
c)  Anchor Box Mechanism: Similar to other object 
detection frameworks, EfficientDet leverages anchor boxes 
[12]. These anchor boxes, strategically positioned across the 
image, serve as reference points for potential object 
locations. The model predicts the presence of objects within 
each anchor box and refines their positions through 
bounding box regression. 
d)  Object Classification: EfficientDet incorporates a robust 
mechanism for object classification. Using a dedicated sub-
network, the model assigns specific class labels to detected 
objects. This allows EfficientDet to handle tasks involving 
multiple object classes. 
e)  EfficientDet Loss Function: The model employs a well-
crafted loss function that combines both classification and 
regression objectives [13]. This loss function ensures that 
the model accurately classifies objects and precisely 
localizes them within the image. 
f)  Compound Scaling: One of the distinctive features of 
EfficientDet is its use of compound scaling to optimize 
model parameters. This technique scales the model’s depth, 

width, and resolution in a balanced manner, resulting in 
improved accuracy without excessive computational 
demands. 
g)  Efficient Single Shot Processing: Following the trend of 
single-shot object detection models, EfficientDet processes 
the entire image in a single pass [14]. This efficient single-
shot processing contributes to the model’s real-time object 
detection capabilities. 

 VI. MATERIALS AND FRAMEWORK 

A. Dataset 
We used Roboflow, a flexible data management tool, to 
carefully select a portion of the large COCO dataset. We 
started with 7,500 photographs in three categories but had 
to narrow them down to a training set of 100 images per 
category due to practical limitations. [15] Each category is then 
evaluated using six test images. The dataset was thoroughly 
preprocessed before training, with all photos resized to a 
standard 416x416 pixel size and rotation augmentations 
applied to increase diversity within the training set.  The 
enormous diversity of the COCO dataset and Roboflow’s 
effective data processing powers were combined to 
create a training experience that was both nuanced and 
highly optimized. 

B. Tools and Techniques 
We used a number of essential tools and libraries in our 
Google-Colab project, as listed below: 
a.TensorFlow We use this open-source machine learning 
framework [16] to develop and train our neural network 
models for their scalability and adaptability, making it a 
popular platform for various machine learning applications. 
b.PyTorch: We used PyTorch because of its dynamic 
computational graph [17], which is especially useful for 
deep learning research and testing. Its simple layout and 
effortless operation made integration into our project a 
breeze. 
Pandas: Pandas is a flexible Python data manipulation 
library. It was used to handle and preprocess data 
efficiently [18]. We could efficiently organize and handle 
our dataset thanks to its Data-Frame format, which also 
helped expedite the data preparation process. 
c.NumPy: Python numerical calculations can be performed 
with the help of the NumPy library. Since NumPy offers a 
strong foundation for various mathematical and statistical 
operations crucial to machine learning processes [19], we 
rely on it for our array-based computations. 
d. OpenCV: For image processing jobs, an Open Source 
Computer vision library was essential [20]. For tasks like 
loading images, resizing them, and performing different 
computer vision operations, we used OpenCV. It was an 
essential tool for handling and modifying image data due to 
its extensive feature set. 
Overall,   TensorFlow,   PyTorch,   Pandas,   NumPy, 
OpenCV, and Google Colab helped us create a strong 
ecosystem that made building and training our machine-
learning models easier. Every tool had a unique function 
that enhanced the effectiveness and success of our 
endeavour. 
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C. Preprocessing 
The dataset was already available in different formats on 
Roboflow. The images were resized to 416 x 416, and 
rotational augmentations were applied. After image 
preprocessing, the dataset directory structure was made to 
match the input format of that model. 

V.  EXPERIMENT 

The Ultralytics YOLOv8 represents a leading-edge, state-of-
the-art (SOTA) model that enhances upon the 
accomplishments of its predecessors, incorporating novel 
features and enhancements to augment overall performance 
and adaptability. YOLOv8 is meticulously crafted to be swift, 
precise, and user-friendly. It is an outstanding option for 
diverse applications such as object detection and tracking, 
instance segmentation, image classification and pose 
estimation tasks. As compared to YOLOv8’s predecessor, 
YOLOv5, YOLOv8 comes with a new anchor-free detection 
system, changes to the convolutional blocks used in the 
model, and mosaic augmentation applied during training, 
turned off before the last 10 epochs. It stores the dataset path 
and classes in the YAML file and was trained by modifying 
the pre-trained weights provided by Ultralytics. The dataset 
was converted to YOLOv8 format by Roboflow Universe. 
Fizyr solutions are employed for custom dataset training with 
RetinaNet. The RetinaNet model undergoes training using 
pre-trained weights from the COCO dataset and a ResNet50 
backbone, comprising a total of 12,863,295 trainable 
parameters. Each annotation is represented on a single line 
using a CSV file to pass data. When images contain multiple 
bounding boxes, each box is assigned its own row in the CSV 
file. Fizyr’s keras-retinanet training procedure employs 
models specifically designed for training purposes, with 
streamlined versions compared to the inference model 
featuring only the essential layers for regression and 
classification values. It is imperative to convert the trained 
model into an inference model to conduct inference on a 
model, which is necessary for object detection in an image. 
In the case of EfficientDet, another EfficientDet Pytorch 
repository has been utilized. This is a Pytorch re-
implementation of the official EfficientDet, showcasing state-
of-the-art (SOTA) performance in real-time scenarios. The 
model encompasses multiple coefficients, ranging from D0 to 
D8, where D8 exhibits the highest mean average precision 
(mAP). The model requires input in a dataset format akin to 
Microsoft COCO, as the repository specifies. A YAML-
formatted configuration file is included, enabling the manual 
configuration of project-specific parameters. During this 
model training, the backbones are frozen, and the training 
parameters are as follows: 
• Epochs: 50 
• Patience: 15 
• Learning Rate: 0.001 
• Batch size: 16 
The dataset is partitioned into training and testing sets, and 
the model undergoes updates across multiple epochs, 
contingent upon the specified tolerance for optimization 
(TOL). Convergence is deemed achieved, and training 
concludes when there is no significant improvement in the 

loss or score by at least TOL for consecutive iterations as 
defined. 

IV. RESULTS AND DISCUSSION 
This investigation involves an assessment of the performance 
of three object detection models – YOLOv8, Efficient- Det, 
and RetinaNet, employing precision, recall, and mean 
Average Precision (mAP) as pivotal metrics. Figure 1 
represents the precision of Yolov8, RetinaNe and 
EfficiantDet algorithms. 
 

 
FIGURE 1: precision of Yolov8, RetinaNet and EfficiantDet algorithms 
 

TABLE I 
PERFORMANCE OF YOLOV8, RETINANET AND EFFICIANTDET 

ALGORITHMS 
Metric YOLOv8 RetinaNet EfficientDet 

Accuracy 0.71 
(highest) 

0.67 0.55 

Inference 
Time 

1.0 ms 
(fastest) 

1.2362 s 
(slowest) 

1.0 s 

mAP 0.71 
(highest) 

0.67 0.55 

 
Table 1 shows the performance of all three algorithms based 
on their accuracy, Inference time and mAp value. As 
mentioned in Table 1, YOLOv8 showed the most elevated 
accuracy among the models, with a score of 0.71, 
demonstrating areas of strength to detect positive occurrences 
accurately. 
RetinaNet exhibited an estimable accuracy of 0.67, 
displaying its precision in accurately identifying positive 
cases. EfficientDet had a precision value of 0.55, 
respectively, which was slightly lower, but it still performed 
well enough to correctly identify true positives. 
IYOLOv8 has the highest speed (inference time) of 1.0ms, 
mirroring its viability in catching significant positive 
occurrences in a single detection. 
RetinaNet detects objects in multiple stages, so it has a high 
inference time of around 1.2362s. 
EfficientDet was followed intimately with an inference 
speed of 1s, showing a comparable ability to detect positive 
instances. With a mAP score of 0.71, YOLOv8 stands out as 
a strong contender for object detection tasks due to its 
overall proficiency in precision and recall. RetinaNet 
showed a competitive mAP value of 0.67, which is a 
reasonable performance. EfficientDet had a respectable 
level of accuracy with a mAP of 0.55, but lagged slightly 
behind the other models. Figure 2 exhibits the mAP values 
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of all three algorithms. 
 

 
FIGURE 2:  mAP for Yolov8, RetinaNet and EfficientDet Algorithms. 

VII.  CONCLUSION 
The comparative examination of performance metrics, mAP 
assessment, and inference times across the three object 
detection models indicates that YOLOv8 achieves the 
highest levels of accuracy,  recall,  and mAP scores,  
positioning it as a robust candidate for object detection 
tasks. Nevertheless, RetinaNet and EfficientDet also 
demonstrate competitive performance, offering potential 
advantages in certain use cases or where specific 
computational requirements are prioritized. YOLOv8 proves 
effective for real-time object detection, particularly for small 
objects, excelling in scenarios emphasizing high accuracy 
and recall. Conversely, RetinaNet’s utilization of focal loss 
enhances its capability to handle class imbalance, and 
EfficientDet’s scalability and efficiency make it an 
attractive choice for re-source-constrained environments. 
These insights provide valuable guidance for researchers 
and practitioners in selecting the most appropriate object 
detection model tailored to their specific needs and 
constraints. 
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